Search results for: Multi Objective Optimization
3017 Semi-Automatic Method to Assist Expert for Association Rules Validation
Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen
Abstract:
In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.Keywords: Association rules, Rule-based classification, Classification quality, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17913016 A β-mannanase from Fusarium oxysporum SS-25 via Solid State Fermentation on Brewer’s Spent Grain: Medium Optimization by Statistical Tools, Kinetic Characterization and Its Applications
Authors: S. S. Rana, C. Janveja, S. K. Soni
Abstract:
This study is concerned with the optimization of fermentation parameters for the hyper production of mannanase from Fusarium oxysporum SS-25 employing two step statistical strategy and kinetic characterization of crude enzyme preparation. The Plackett-Burman design used to screen out the important factors in the culture medium revealed 20% (w/w) wheat bran, 2% (w/w) each of potato peels, soyabean meal and malt extract, 1% tryptone, 0.14% NH4SO4, 0.2% KH2PO4, 0.0002% ZnSO4, 0.0005% FeSO4, 0.01% MnSO4, 0.012% SDS, 0.03% NH4Cl, 0.1% NaNO3 in brewer’s spent grain based medium with 50% moisture content, inoculated with 2.8×107 spores and incubated at 30oC for 6 days to be the main parameters influencing the enzyme production. Of these factors, four variables including soyabean meal, FeSO4, MnSO4 and NaNO3 were chosen to study the interactive effects and their optimum levels in central composite design of response surface methodology with the final mannanase yield of 193 IU/gds. The kinetic characterization revealed the crude enzyme to be active over broader temperature and pH range. This could result in 26.6% reduction in kappa number with 4.93% higher tear index and 1% increase in brightness when used to treat the wheat straw based kraft pulp. The hydrolytic potential of enzyme was also demonstrated on both locust bean gum and guar gum.
Keywords: Brewer’s Spent Grain, Fusarium oxysporum, Mannanase, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51743015 Solar Tracking System: More Efficient Use of Solar Panels
Abstract:
This paper shows the potential system benefits of simple tracking solar system using a stepper motor and light sensor. This method is increasing power collection efficiency by developing a device that tracks the sun to keep the panel at a right angle to its rays. A solar tracking system is designed, implemented and experimentally tested. The design details and the experimental results are shown.Keywords: Renewable Energy, Power Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77923014 Stability Analysis of a Tricore
Authors: C. M. De Marco Muscat-Fenech, A.M. Grech La Rosa
Abstract:
The application of stability theory has led to detailed studies of different types of vessels; however, the shortage of information relating to multihull vessels demanded further investigation. This study shows that the position of the hulls has a very influential effect on both the transverse and longitudinal stability of the tricore. HSC stability code is applied for the optimisation of the hull configurations. Such optimization criteria would undoubtedly aid the performance of the vessel for both commercial or leisure purposes
Keywords: Stability, Multihull, Tricore
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29033013 Factors of Effective Business Software Systems Development and Enhancement Projects Work Effort Estimation
Authors: Beata Czarnacka-Chrobot
Abstract:
Majority of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) fail to meet criteria of their effectiveness, what leads to the considerable financial losses. One of the fundamental reasons for such projects- exceptionally low success rate are improperly derived estimates for their costs and time. In the case of BSS D&EP these attributes are determined by the work effort, meanwhile reliable and objective effort estimation still appears to be a great challenge to the software engineering. Thus this paper is aimed at presenting the most important synthetic conclusions coming from the author-s own studies concerning the main factors of effective BSS D&EP work effort estimation. Thanks to the rational investment decisions made on the basis of reliable and objective criteria it is possible to reduce losses caused not only by abandoned projects but also by large scale of overrunning the time and costs of BSS D&EP execution.Keywords: Benchmarking data, business software systems development and enhancement projects, effort estimation, software engineering economics, software functional size measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15423012 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects
Authors: Ayedh Alqahtani, Andrew Whyte
Abstract:
Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.
Keywords: Building projects, Capital cost, Life cycle cost, Maintenance costs, Operation costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19313011 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20593010 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Authors: Indiramma M., K. R. Anandakumar
Abstract:
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18933009 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks
Authors: A. Allirani, M. Suganthi
Abstract:
Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27413008 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6453007 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13023006 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings
Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani
Abstract:
The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.Keywords: Direct method, finite element method, foundation, R/C frame, soil-structure interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26803005 Electrically Conducting Lubricants: Esterified Carbon Nanotubes
Authors: Wei Chin, Wen-Kuang Hsu
Abstract:
Fats and oils are made of esterified hydrocarbons (RCOOR-) and this work demonstrates the substitution of R by multi-walled CNTs (MWNTs). The resultant materials are fluidic, oily, electrically conducting and excellent lubricants. Esterified MWNTs can also respond to magnetic field when tubules contain long segments of FeKeywords: Liquids Nanomaterials Electric conductors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18453004 Development of Rock Engineering System-Based Models for Tunneling Progress Analysis and Evaluation: Case Study of Tailrace Tunnel of Azad Power Plant Project
Authors: S. Golmohammadi, M. Noorian Bidgoli
Abstract:
Tunneling progress is a key parameter in the blasting method of tunneling. Taking measures to enhance tunneling advance can limit the progress distance without a supporting system, subsequently reducing or eliminating the risk of damage. This paper focuses on modeling tunneling progress using three main groups of parameters (tunneling geometry, blasting pattern, and rock mass specifications) based on the Rock Engineering Systems (RES) methodology. In the proposed models, four main effective parameters on tunneling progress are considered as inputs (RMR, Q-system, Specific charge of blasting, Area), with progress as the output. Data from 86 blasts conducted at the tailrace tunnel in the Azad Dam, western Iran, were used to evaluate the progress value for each blast. The results indicated that, for the 86 blasts, the progress of the estimated model aligns mostly with the measured progress. This paper presents a method for building the interaction matrix (statistical base) of the RES model. Additionally, a comparison was made between the results of the new RES-based model and a Multi-Linear Regression (MLR) analysis model. In the RES-based model, the effective parameters are RMR (35.62%), Q (28.6%), q (specific charge of blasting) (20.35%), and A (15.42%), respectively, whereas for MLR analysis, the main parameters are RMR, Q (system), q, and A. These findings confirm the superior performance of the RES-based model over the other proposed models.
Keywords: Rock Engineering Systems, tunneling progress, Multi Linear Regression, Specific charge of blasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413003 A Multi-Science Study of Modern Synergetic War and Its Information Security Component
Authors: Alexander G. Yushchenko
Abstract:
From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.
Keywords: Cyber and information security, psycho-information technology, hybrid war, synergetic war, WWIII, Ruschism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10113002 4D Modelling of Low Visibility Underwater Archaeological Excavations Using Multi-Source Photogrammetry in the Bulgarian Black Sea
Authors: Rodrigo Pacheco-Ruiz, Jonathan Adams, Felix Pedrotti
Abstract:
This paper introduces the applicability of underwater photogrammetric survey within challenging conditions as the main tool to enhance and enrich the process of documenting archaeological excavation through the creation of 4D models. Photogrammetry was being attempted on underwater archaeological sites at least as early as the 1970s’ and today the production of traditional 3D models is becoming a common practice within the discipline. Photogrammetry underwater is more often implemented to record exposed underwater archaeological remains and less so as a dynamic interpretative tool. Therefore, it tends to be applied in bright environments and when underwater visibility is > 1m, reducing its implementation on most submerged archaeological sites in more turbid conditions. Recent years have seen significant development of better digital photographic sensors and the improvement of optical technology, ideal for darker environments. Such developments, in tandem with powerful processing computing systems, have allowed underwater photogrammetry to be used by this research as a standard recording and interpretative tool. Using multi-source photogrammetry (5, GoPro5 Hero Black cameras) this paper presents the accumulation of daily (4D) underwater surveys carried out in the Early Bronze Age (3,300 BC) to Late Ottoman (17th Century AD) archaeological site of Ropotamo in the Bulgarian Black Sea under challenging conditions (< 0.5m visibility). It proves that underwater photogrammetry can and should be used as one of the main recording methods even in low light and poor underwater conditions as a way to better understand the complexity of the underwater archaeological record.Keywords: 4D modelling, Black Sea, maritime archaeology, underwater photogrammetry, Bronze Age, low visibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15383001 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design
Authors: Yuan-Jye Tseng, Yi-Shiuan Chen
Abstract:
In this paper, a new concept of closed-loop design for a product is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Subsequently, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluating the criteria in forward design, reverse design, and green manufacturing. A fuzzy analytic network process method is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In applications, a super matrix model is created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.Keywords: Design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18123000 Subjective Versus Objective Assessment for Magnetic Resonance Images
Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran
Abstract:
Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.Keywords: Medical Resonance (MR) images, Difference Mean Opinion Score (DMOS), Full Reference Image Quality Assessment (FR-IQA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22182999 The Design and Development of Driving Game as an Evaluation Instrument for Driving License Test
Authors: Abdul Hadi Abdul Razak, Mohd Hairy Manap
Abstract:
The focus of this paper is to highlight the design and development of an educational game prototype as an evaluation instrument for the Malaysia driving license static test. This educational game brings gaming technology into the conventional objective static test to make it more effective, real and interesting. From the feeling of realistic, the future driver can learn something, memorized and use it in the real life. The current online objective static test only make the user memorized the answer without knowing and understand the true purpose of the question. Therefore, in real life, they will not behave as expected due to behavior and moral lacking. This prototype has been developed inform of multiple-choice questions integrated with 3D gaming environment to make it simulate the real environment and scenarios. Based on the testing conducted, the respondent agrees with the use of this game prototype it can increase understanding and promote obligation towards traffic rules.Keywords: Educational game, evaluation instrument, game, game prototype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15132998 Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes
Authors: Ilona Mewes, Helena Jenzer, Farshideh Einsele
Abstract:
Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.
Keywords: Health informatics, data mining, nutritional and health databases, nutritional and chronical databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17252997 Associated Map and Inter-Purchase Time Model for Multiple-Category Products
Authors: Ching-I Chen
Abstract:
The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system.
To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.
Keywords: Multiple-category purchase behavior, inter-purchase time, market basket analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18712996 Normalization and Constrained Optimization of Measures of Fuzzy Entropy
Authors: K.C. Deshmukh, P.G. Khot, Nikhil
Abstract:
In the literature of information theory, there is necessity for comparing the different measures of fuzzy entropy and this consequently, gives rise to the need for normalizing measures of fuzzy entropy. In this paper, we have discussed this need and hence developed some normalized measures of fuzzy entropy. It is also desirable to maximize entropy and to minimize directed divergence or distance. Keeping in mind this idea, we have explained the method of optimizing different measures of fuzzy entropy.Keywords: Fuzzy set, Uncertainty, Fuzzy entropy, Normalization, Membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14722995 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.
Keywords: Data fusion, Gaussian process regression, signal denoise, temporal extrapolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5012994 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.
Keywords: Bridge, construction, drones, infrastructure, information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13082993 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.
Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20042992 Spatial Planning and Tourism Development with Sustainability Model of the Territorial Tourist with Land Use Approach
Authors: Mehrangiz Rezaee, Zabih Charrahi
Abstract:
In the last decade, with increasing tourism destinations and tourism growth, we are witnessing the widespread impacts of tourism on the economy, environment and society. Tourism and its related economy are now undergoing a transformation and as one of the key pillars of business economics, it plays a vital role in the world economy. Activities related to tourism and providing services appropriate to it in an area, like many economic sectors, require the necessary context on its origin. Given the importance of tourism industry and tourism potentials of Yazd province in Iran, it is necessary to use a proper procedure for prioritizing different areas for proper and efficient planning. One of the most important goals of planning is foresight and creating balanced development in different geographical areas. This process requires an accurate study of the areas and potential and actual talents, as well as evaluation and understanding of the relationship between the indicators affecting the development of the region. At the global and regional level, the development of tourist resorts and the proper distribution of tourism destinations are needed to counter environmental impacts and risks. The main objective of this study is the sustainable development of suitable tourism areas. Given that tourism activities in different territorial areas require operational zoning, this study deals with the evaluation of territorial tourism using concepts such as land use, fitness and sustainable development. It is essential to understand the structure of tourism development and the spatial development of tourism using land use patterns, spatial planning and sustainable development. Tourism spatial planning implements different approaches. However, the development of tourism as well as the spatial development of tourism is complex, since tourist activities can be carried out in different areas with different purposes. Multipurpose areas have great important for tourism because it determines the flow of tourism. Therefore, in this paper, by studying the development and determination of tourism suitability that is related to spatial development, it is possible to plan tourism spatial development by developing a model that describes the characteristics of tourism. The results of this research determine the suitability of multi-functional territorial tourism development in line with spatial planning of tourism.
Keywords: Land use change, spatial planning, sustainability, territorial tourist, Yazd.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11252991 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33002990 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage
Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy
Abstract:
Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates and use the model to determine ways to improve the economics and address cold weather issues. In this paper the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using Organic Rankine Cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modelling provides dynamic performance results using measured meteorological data recorded every minute at the solar facility location. The purpose of this modeling approach is to accurately predict system performance at each time step considering the solar radiation fluctuations due to passing clouds. Optimization of the controller in cold temperatures is another goal of the simulation to for example minimize heat losses in winter when energy demand is high and solar resources are low. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. The results of the simulation are presented for a summer day in Winnipeg which includes comparison of performance parameters of the absorption cooling and ORC systems at different heat transfer fluid (HTF) temperatures.
Keywords: Absorption cooling, parabolic solar trough, remote community, organic Rankine cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31142989 A Hybridized Competency-Based Teacher Candidate Selection System
Authors: R. Ramli, M. I. Ghazali, H. Ibrahim, M. M. Kasim, F. M. Kamal, S.Vikneswari
Abstract:
Teachers form the backbone of any educational system, hence selecting qualified candidates is very crucial. In Malaysia, the decision making in the selection process involves a few stages: Initial filtering through academic achievement, taking entry examination and going through an interview session. The last stage is the most challenging since it highly depends on human judgment. Therefore, this study sought to identify the selection criteria for teacher candidates that form the basis for an efficient multi-criteria teacher-candidate selection model for that last stage. The relevant criteria were determined from the literature and also based on expert input that is those who were involved in interviewing teacher candidates from a public university offering the formal training program. There are three main competency criteria that were identified which are content of knowledge, communication skills and personality. Further, each main criterion was divided into a few subcriteria. The Analytical Hierarchy Process (AHP) technique was employed to allocate weights for the criteria and later, integrated a Simple Weighted Average (SWA) scoring approach to develop the selection model. Subsequently, a web-based Decision Support System was developed to assist in the process of selecting the qualified teacher candidates. The Teacher-Candidate Selection (TeCaS) system is able to assist the panel of interviewers during the selection process which involves a large amount of complex qualitative judgments.
Keywords: Analytic Hierarchy Process, Simple Weighted Average, Decision Support System, Multi-criteria decision making problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21872988 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing
Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida
Abstract:
This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962