Search results for: RF propagation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 469

Search results for: RF propagation

319 Improvement of Model for SIMMER Code for SFR Corium Relocation Studies

Authors: A. Bachrata, N. Marie, F. Bertrand, J. B. Droin

Abstract:

The in-depth understanding of severe accident propagation in Generation IV of nuclear reactors is important so that appropriate risk management can be undertaken early in their design process. This paper is focused on model improvements in the SIMMER code in order to perform studies of severe accident mitigation of Sodium Fast Reactor. During the design process of the mitigation devices dedicated to extraction of molten fuel from the core region, the molten fuel propagation from the core up to the core catcher has to be studied. In this aim, analytical as well as the complex thermohydraulic simulations with SIMMER-III code are performed. The studies presented in this paper focus on physical phenomena and associated physical models that influence the corium relocation. Firstly, the molten pool heat exchange with surrounding structures is analyzed since it influences directly the instant of rupture of the dedicated tubes favoring the corium relocation for mitigation purpose. After the corium penetration into mitigation tubes, the fuel-coolant interactions result in formation of debris bed. Analyses of debris bed fluidization as well as sinking into a fluid are presented in this paper.

Keywords: Corium, mitigation tubes, SIMMER-III, sodium fast reactor (SFR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
318 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model

Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy

Abstract:

A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
317 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model

Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman

Abstract:

The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.

Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
316 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
315 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
314 Low Resolution Single Neural Network Based Face Recognition

Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum

Abstract:

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
313 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol

Authors: Apidet Booranawong

Abstract:

In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.

Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
312 An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics

Authors: Appanah Rao Appadu, Muhammad Zaid Dauhoo

Abstract:

In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.

Keywords: Optimised time derivative, dissipation, dispersion, cfl number, Nomenclature: k : time step, h : spatial step, β :advection velocity, r: cfl/Courant number, hkrβ= , w =θ, h : exact wave number, n :time level, RPE : Relative phase error per unit time step, AFM :modulus of amplification factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
311 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks

Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar

Abstract:

Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.

Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
310 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
309 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air

Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli

Abstract:

Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.

Keywords: Numerical modelling, source of pollution, dust propagation, western light air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
308 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

Authors: Anupama Pande, Vishik Goel

Abstract:

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
307 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneouvre modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in groundtrack as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions. 

Keywords: Flight Dynamics System, Orbit Propagation, Satellite Ephemeris, Thailand’s Earth Observation Satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
306 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
305 An Ising-based Model for the Spread of Infection

Authors: Christian P. Crisostomo, Chrysline Margus N. Piñol

Abstract:

A zero-field ferromagnetic Ising model is utilized to simulate the propagation of infection in a population that assumes a square lattice structure. The rate of infection increases with temperature. The disease spreads faster among individuals with low J values. Such effect, however, diminishes at higher temperatures.

Keywords: Epidemiology, Ising model, lattice models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
304 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
303 Signals from the Rocks

Authors: Ernst D. Schmitter

Abstract:

There is increasing evidence that earthquakes produce electromagnetic signals observable at the surface in the extremely low to very low freqency (ELF - VLF) range often in advance to the main event. These precursors are candidates for prediction purposes. Laboratory experiments con´¼ürm that material under load emits an electromagnetic signature, the detailed generation mechanisms how- ever are not well understood yet.

Keywords: Earthquakes, ELF, EM signals from material under load, signal propagation in conductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
302 Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows

Authors: D. Sun, T. F. Lu, A. Zander, M. Trinkle

Abstract:

This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field.

Keywords: Airborne, airflow, focused sound field, ultrasonic phased array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
301 Improved Fuzzy Neural Modeling for Underwater Vehicles

Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray

Abstract:

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
300 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids

Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit

Abstract:

Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.

Keywords: Flood modeling, dam-break, shallow water equations, Discontinuous Galerkin scheme, MUSCL scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
299 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami

Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen

Abstract:

Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
298 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks

Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha

Abstract:

This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.

Keywords: 5G, millimetre wavebands, super high-frequency band, SINR, signal-to-interference-plus-noise ratio, cost benefit analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
297 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: Logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
296 Selective Excitation of Circular Helical Modes in Graded Index Fibers

Authors: S. Al-Sowayan

Abstract:

The impact of selective excitation of circular helical modes of graded-index fibers on its capacity is analyzed using a model for propagation delay variation with launch offset and angle that resulted from misalignment of source and fiber axis. Results show promising technique to improve graded-index fiber capacities.

Keywords: Fiber measurements, Fiber optic communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
295 Tsunami Inundation Modeling in a Boundary Fitted Curvilinear Grid Model Using the Method of Lines Technique

Authors: M. Ashaque Meah, M. Shah Noor, M Asif Arefin, Md. Fazlul Karim

Abstract:

A numerical technique in a boundary-fitted curvilinear grid model is developed to simulate the extent of inland inundation along the coastal belts of Peninsular Malaysia and Southern Thailand due to 2004 Indian ocean tsunami. Tsunami propagation and run-up are also studied in this paper. The vertically integrated shallow water equations are solved by using the method of lines (MOL). For this purpose the boundary-fitted grids are generated along the coastal and island boundaries and the other open boundaries of the model domain. A transformation is used to the governing equations so that the transformed physical domain is converted into a rectangular one. The MOL technique is applied to the transformed shallow water equations and the boundary conditions so that the equations are converted into ordinary differential equations initial value problem. Finally the 4th order Runge-Kutta method is used to solve these ordinary differential equations. The moving boundary technique is applied instead of fixed sea side wall or fixed coastal boundary to ensure the movement of the coastal boundary. The extent of intrusion of water and associated tsunami propagation are simulated for the 2004 Indian Ocean tsunami along the west coast of Peninsular Malaysia and southern Thailand. The simulated results are compared with the results obtained from a finite difference model and the data available in the USGS website. All simulations show better approximation than earlier research and also show excellent agreement with the observed data.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
294 Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania

Authors: Valbona Sota, Efigjeni Kongjika

Abstract:

Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4ºC) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4ºC was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond.

Keywords: Micropropagation, minimal growth, storage, wild almond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
293 A Grid-based Neural Network Framework for Multimodal Biometrics

Authors: Sitalakshmi Venkataraman

Abstract:

Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.

Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
292 The Assessment of Interactions in Ratios Control Schemes for a Binary Distillation Column

Authors: R. Bendib, A. Khelassi

Abstract:

In this paper we will consider the most known ratios control schemes ((L/D, V/B),(L/D,V/F), Ryskamp-s, and (D/(L+D),V/B)) for binary distillation column and we compare them in the basis of interactions and disturbance propagation. The models for these configurations are deuced using mathematical transformations taking the energy balance structure (LV) as a base model. The dynamic relative magnitude criterion (DRMC) is used to assess the interactions. The results show that the introduction of ratios in controlling the column tends to minimize the degree of interactions between the loops.

Keywords: Distillation, interaction, DRMC, configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
291 Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties

Authors: Mousavian, M. Moghimi Mofrad, M. H. Vakili, D. Ashouri, R. Alizadeh

Abstract:

The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.

Keywords: Neural Network, Net Heating Value, Crude Oil, Experimental, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
290 Propagation of Electron-Acoustic Solitary Waves in Weakly Relativistically Degenerate Fermi Plasma

Authors: Swarniv Chandra, Basudev Ghosh, S. N. Paul

Abstract:

Using one dimensional Quantum hydrodynamic (QHD) model Korteweg de Vries (KdV) solitary excitations of electron-acoustic waves (EAWs) have been examined in twoelectron- populated relativistically degenerate super dense plasma. It is found that relativistic degeneracy parameter influences the conditions of formation and properties of solitary structures.

Keywords: Relativistic Degeneracy, Electron-Acoustic Waves, Quantum Plasma, KdV Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741