Search results for: Multivariate Adaptive Regression Splines Pulmonary Function Test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6079

Search results for: Multivariate Adaptive Regression Splines Pulmonary Function Test

5929 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: Additive models, local polynomial regression, residuals, mean square error, variable selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
5928 Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.

Keywords: Benjamin-Bona-Mahony-Burgers equation, Cubic Bspline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3701
5927 Evidence of the Long-run Equilibrium between Money Demand Determinants in Croatia

Authors: B. Skrabic, N. Tomic-Plazibat

Abstract:

In this paper real money demand function is analyzed within multivariate time-series framework. Cointegration approach is used (Johansen procedure) assuming interdependence between money demand determinants, which are nonstationary variables. This will help us to understand the behavior of money demand in Croatia, revealing the significant influence between endogenous variables in vector autoregrression system (VAR), i.e. vector error correction model (VECM). Exogeneity of the explanatory variables is tested. Long-run money demand function is estimated indicating slow speed of adjustment of removing the disequilibrium. Empirical results provide the evidence that real industrial production and exchange rate explains the most variations of money demand in the long-run, while interest rate is significant only in short-run.

Keywords: Cointegration, Long-run equilibrium, Money demand function, Vector error correction model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
5926 Shot Detection Using Modified Dugad Model

Authors: Lenka Krulikovská, Jaroslav Polec

Abstract:

In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.

Keywords: Abrupt cut, shot cut detection, adaptive threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
5925 Adaptive Line Enhancement of Narrowband Signal

Authors: Young-Seok Choi

Abstract:

The Adaptive Line Enhancer (ALE) is widely used for enhancing narrowband signals corrupted by broadband noise. In this paper, we propose novel ALE methods to improve the enhancing capability. The proposed methods are motivated by the fact that the output of the ALE is a fine estimate of the desired narrowband signal with the broadband noise component suppressed. The proposed methods preprocess the input signal using ALE filter to regenerate a finer input signal. Thus the proposed ALE is driven by the input signal with higher signal-to-noise ratio (SNR). The analysis and simulation results are presented to demonstrate that the proposed ALE has better performance than conventional ALE’s.

Keywords: Adaptive filter, adaptive line enhancer, noise, feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
5924 An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System

Authors: Vikram Jeganathan, A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Adaptive fuzzy controller, Hydronic heating system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
5923 Performance Analysis of Selective Adaptive Multiple Access Interference Cancellation for Multicarrier DS-CDMA Systems

Authors: Maged Ahmed, Ahmed El-Mahdy

Abstract:

In this paper, Selective Adaptive Parallel Interference Cancellation (SA-PIC) technique is presented for Multicarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) scheme. The motivation of using SA-PIC is that it gives high performance and at the same time, reduces the computational complexity required to perform interference cancellation. An upper bound expression of the bit error rate (BER) for the SA-PIC under Rayleigh fading channel condition is derived. Moreover, the implementation complexities for SA-PIC and Adaptive Parallel Interference Cancellation (APIC) are discussed and compared. The performance of SA-PIC is investigated analytically and validated via computer simulations.

Keywords: Adaptive interference cancellation, communicationsystems, multicarrier signal processing, spread spectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
5922 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: Bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
5921 A Martingale Residual Diagnostic for Logistic Regression Model

Authors: Entisar A. Elgmati

Abstract:

Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.

Keywords: Covariance, logistic model, misspecification, recurrent events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
5920 Automating Test Activities: Test Cases Creation, Test Execution, and Test Reporting with Multiple Test Automation Tools

Authors: Loke Mun Sei

Abstract:

Software testing has become a mandatory process in assuring the software product quality. Hence, test management is needed in order to manage the test activities conducted in the software test life cycle. This paper discusses on the challenges faced in the software test life cycle, and how the test processes and test activities, mainly on test cases creation, test execution, and test reporting is being managed and automated using several test automation tools, i.e. Jira, Robot Framework, and Jenkins.

Keywords: Test automation tools, test case, test execution, test reporting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105
5919 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.

Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
5918 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone

Authors: Ibrahim F. Jasim

Abstract:

This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.

Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
5917 Regional Analysis of Streamflow Drought: A Case Study for Southwestern Iran

Authors: M. Byzedi, B. Saghafian

Abstract:

Droughts are complex, natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts, such as meteorological, agricultural, hydrological, and socioeconomical are distinguished. Streamflow drought was analyzed by the method of truncation level (at 70% level) on daily discharges measured in 54 hydrometric stations in southwestern Iran. Frequency analysis was carried out for annual maximum series (AMS) of drought deficit volume and duration series. Some factors including physiographic, climatic, geologic, and vegetation cover were studied as influential factors in the regional analysis. According to the results of factor analysis, six most effective factors were identified as area, rainfall from December to February, the percent of area with Normalized Difference Vegetation Index (NDVI) <0.1, the percent of convex area, drainage density and the minimum of watershed elevation that explained 90.9% of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. Suitable multivariate regression models were evaluated for streamflow drought deficit volume with 2 years return period. The significance level of regression models was 0.01. The results showed that the watershed area is the most effective factor with high correlation with deficit volume. Also, drought duration was not a suitable drought index for regional analysis.

Keywords: Iran, Streamflow drought, truncation level method, regional analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
5916 DMC with Adaptive Weighted Output

Authors: Ahmed Abbas, M.R. M Rizk, Mohamed El-Sayed

Abstract:

This paper presents a new adaptive DMC controller that improves the controller performance in case of plant-model mismatch. The new controller monitors the plant measured output, compares it with the model output and calculates weights applied to the controller move. Simulations show that the new controller can help improve control performance and avoid instability in case of severe model mismatches.

Keywords: Adaptive control, dynamic matrix control, DMC, model predictive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
5915 The Framework for Adaptive Games for Mobile Application Using Neural Networks

Authors: Widodo Budiharto, Michael Yoseph Ricky, Ro'fah Nur Rachmawati

Abstract:

The rapid development of the BlackBerry games industry and its development goals were not just for entertainment, but also used for educational of students interactively. Unfortunately the development of adaptive educational games on BlackBerry in Indonesian language that interesting and entertaining for learning process is very limited. This paper shows the research of development of novel adaptive educational games for students who can adjust the difficulty level of games based on the ability of the user, so that it can motivate students to continue to play these games. We propose a method where these games can adjust the level of difficulty, based on the assessment of the results of previous problems using neural networks with three inputs in the form of percentage correct, the speed of answer and interest mode of games (animation / lessons) and 1 output. The experimental results are presented and show the adaptive games are running well on mobile devices based on BlackBerry platform

Keywords: Adaptive games, neural networks, mobile games, BlackBerry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
5914 Wavelet Feature Selection Approach for Heart Murmur Classification

Authors: G. Venkata Hari Prasad, P. Rajesh Kumar

Abstract:

Phonocardiography is important in appraisal of congenital heart disease and pulmonary hypertension as it reflects the duration of right ventricular systoles. The systolic murmur in patients with intra-cardiac shunt decreases as pulmonary hypertension develops and may eventually disappear completely as the pulmonary pressure reaches systemic level. Phonocardiography and auscultation are non-invasive, low-cost, and accurate methods to assess heart disease. In this work an objective signal processing tool to extract information from phonocardiography signal using Wavelet is proposed to classify the murmur as normal or abnormal. Since the feature vector is large, a Binary Particle Swarm Optimization (PSO) with mutation for feature selection is proposed. The extracted features improve the classification accuracy and were tested across various classifiers including Naïve Bayes, kNN, C4.5, and SVM.

Keywords: Phonocardiography, Coiflet, Feature selection, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
5913 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.

Keywords: Adaptive estimation, fault detection, GNSS, residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
5912 Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme

Authors: Noor Asma Husain, Mohd Shafry Mohd Rahim, Abdullah Bade

Abstract:

Subdivision surfaces were applied to the entire meshes in order to produce smooth surfaces refinement from coarse mesh. Several schemes had been introduced in this area to provide a set of rules to converge smooth surfaces. However, to compute and render all the vertices are really inconvenient in terms of memory consumption and runtime during the subdivision process. It will lead to a heavy computational load especially at a higher level of subdivision. Adaptive subdivision is a method that subdivides only at certain areas of the meshes while the rest were maintained less polygons. Although adaptive subdivision occurs at the selected areas, the quality of produced surfaces which is their smoothness can be preserved similar as well as regular subdivision. Nevertheless, adaptive subdivision process burdened from two causes; calculations need to be done to define areas that are required to be subdivided and to remove cracks created from the subdivision depth difference between the selected and unselected areas. Unfortunately, the result of adaptive subdivision when it reaches to the higher level of subdivision, it still brings the problem with memory consumption. This research brings to iterative process of adaptive subdivision to improve the previous adaptive method that will reduce memory consumption applied on triangular mesh. The result of this iterative process was acceptable better in memory and appearance in order to produce fewer polygons while it preserves smooth surfaces.

Keywords: Subdivision surfaces, adaptive subdivision, selectioncriteria, handle cracks, smooth surface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
5911 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
5910 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
5909 Dichotomous Logistic Regression with Leave-One-Out Validation

Authors: Sin Yin Teh, Abdul Rahman Othman, Michael Boon Chong Khoo

Abstract:

In this paper, the concepts of dichotomous logistic regression (DLR) with leave-one-out (L-O-O) were discussed. To illustrate this, the L-O-O was run to determine the importance of the simulation conditions for robust test of spread procedures with good Type I error rates. The resultant model was then evaluated. The discussions included 1) assessment of the accuracy of the model, and 2) parameter estimates. These were presented and illustrated by modeling the relationship between the dichotomous dependent variable (Type I error rates) with a set of independent variables (the simulation conditions). The base SAS software containing PROC LOGISTIC and DATA step functions can be making used to do the DLR analysis.

Keywords: Dichotomous logistic regression, leave-one-out, testof spread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
5908 Performance Analysis of a Series of Adaptive Filters in Non-Stationary Environment for Noise Cancelling Setup

Authors: Anam Rafique, Syed Sohail Ahmed

Abstract:

One of the essential components of much of DSP application is noise cancellation. Changes in real time signals are quite rapid and swift. In noise cancellation, a reference signal which is an approximation of noise signal (that corrupts the original information signal) is obtained and then subtracted from the noise bearing signal to obtain a noise free signal. This approximation of noise signal is obtained through adaptive filters which are self adjusting. As the changes in real time signals are abrupt, this needs adaptive algorithm that converges fast and is stable. Least mean square (LMS) and normalized LMS (NLMS) are two widely used algorithms because of their plainness in calculations and implementation. But their convergence rates are small. Adaptive averaging filters (AFA) are also used because they have high convergence, but they are less stable. This paper provides the comparative study of LMS and Normalized NLMS, AFA and new enhanced average adaptive (Average NLMS-ANLMS) filters for noise cancelling application using speech signals.

Keywords: AFA, ANLMS, LMS, NLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
5907 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
5906 Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel

Authors: Wei Zhang, Su-Yan Tang, Yi-Fan Zhu, Wei-Ping Wang

Abstract:

Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.

Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
5905 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: Meta-modal, objective function, steel frames, seismic analysis, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
5904 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory

Authors: R. K. Saxena, Ravi Saxena

Abstract:

In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
5903 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
5902 A Fast Adaptive Tomlinson-Harashima Precoder for Indoor Wireless Communications

Authors: M. Naresh Kumar, Abhijit Mitra, C. Ardil

Abstract:

A fast adaptive Tomlinson Harashima (T-H) precoder structure is presented for indoor wireless communications, where the channel may vary due to rotation and small movement of the mobile terminal. A frequency-selective slow fading channel which is time-invariant over a frame is assumed. In this adaptive T-H precoder, feedback coefficients are updated at the end of every uplink frame by using system identification technique for channel estimation in contrary with the conventional T-H precoding concept where the channel is estimated during the starting of the uplink frame via Wiener solution. In conventional T-H precoder it is assumed the channel is time-invariant in both uplink and downlink frames. However assuming the channel is time-invariant over only one frame instead of two, the proposed adaptive T-H precoder yields better performance than conventional T-H precoder if the channel is varied in uplink after receiving the training sequence.

Keywords: Tomlinson-Harashima precoder, Adaptive channel estimation, Indoor wireless communication, Bit error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
5901 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
5900 Crisis In/Out, Emergent, and Adaptive Urban Organisms

Authors: Y. Hadjichristou, A. Swiny, M. Georgiou

Abstract:

This paper focuses on the questions raised through the work of Unit 5: ‘In/Out Crisis, emergent and adaptive’; an architectural research-based studio at [ARC] University of Nicosia. Students were asked to delve into state of Art Technologies in order to propose sustainable Emergent and Adaptive Architectures and Urbanities, the resulting unprecedented spatial conditions and atmospheres of the emergent new ways of living are deemed to be the ultimate aim of the investigation. Students explored a variety of sites and crisis conditions seen through their primary ingredient identified as soil, water and air and their paired combination. Within this methodology, crisis is seen as a mechanism for allowing an emergence of new and fascinating ultimate sustainable future cultures and cities by taking advantage of the primary materiality of the sites.

Keywords: Adaptive built environments, crisis as opportunity, emergent urbanities, forces for inventions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799