
 

 

 
Abstract—In any production process, every product is aimed to 

attain a certain standard, but the presence of assignable cause of 
variability affects our process, thereby leading to low quality of 
product. The ability to identify and remove this type of variability 
reduces its overall effect, thereby improving the quality of the 
product. In case of a univariate control chart signal, it is easy to 
detect the problem and give a solution since it is related to a single 
quality characteristic. However, the problems involved in the use of 
multivariate control chart are the violation of multivariate normal 
assumption and the difficulty in identifying the quality 
characteristic(s) that resulted in the out of control signals. The 
purpose of this paper is to examine the use of non-parametric control 
chart (the bootstrap approach) for obtaining control limit to overcome 
the problem of multivariate distributional assumption and the p-value 
method for detecting out of control signals. Results from a 
performance study show that the proposed bootstrap method enables 
the setting of control limit that can enhance the detection of out of 
control signals when compared, while the p-value method also 
enhanced in identifying out of control variables. 
 

Keywords—Bootstrap control limit, p-value method, out-of-
control signals, p-value, quality characteristics.  

I. INTRODUCTION 

ONTROL charting procedures have some similarities 
with traditional statistical inference procedures like the 

hypothesis testing and confidence intervals. Most of the 
procedures are obtained following some defined postulation 
that the variable(s) under consideration follow some form of 
multivariate parametric distribution and they are known as 
parametric statistical inference methods. These methods are 
more effective and most efficient when the distributional 
assumption is satisfied. However, the usual practice is that 
such information is not available to the quality control 
manager who is interested in finding solution to the problem. 
In order to solve this issue, statistical inference methods that 
include hypothesis tests, confidence intervals, and control 
charts that do not desire any specific parametric distributional 
assumptions have been introduced and reviewed in the 
literature. Collectively, these methods are known as the non-
parametric or distribution-free methods [1], [2]. Violating the 
distributional assumptions underlying parametric control 
charts may result in ineffective control chart method, and a 
nonparametric control chart may provide a better alternative 
[3]. It is of this view that the non-parametric methods such as 
the bootstrap approach of setting control limits and 
identification of out of control signals shall be looked into in 
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this work.  

II. THE BOOTSTRAP METHOD OF SETTING CONTROL LIMITS 

Suppose a population with mean vector (μ) and variance 
covariance matrix (∑), where μ and ∑ are known from a 
multivariate distribution assumption that is normal, the 2 
distribution is used to obtain a control limit for setting up 
Hotelling’s 2 control charts. When the (μ) and (∑) are not 
known, and must be obtained from the given data as ̅ and  
respectively, the f-distribution is used in estimating 
Hotelling’s T2 control limits [4], [5]. The Hotelling’s  
statistic of any given set of observation is expressed as: 

 

 ̅
′

̅ ; 	 1,2, … , ; 1,2, … ,   (1) 
 
where  is the total number of observations and  is the total 
number of process quality characteristics and the Hotelling’s 
T2 control limit is given by:  
 

  	 , ,        (2) 

 
where  represents the specified false alarm rate similar to 
type I error rate and , ,  represents the  distribution with 
parameters  and  degrees of freedom.  

If multivariate distributional assumption is violated (the 
usual case in practice), a control limit based on these methods 
may be inaccurate, thereby increasing the rate of detecting 
more out of control signals when the process is in control [6]-
[12]. To reduce the abnormal behaviors observed when the 
multivariate distributional assumption is violated, [8] proposed 
the bootstrap based  multivariate control charts. This 
method obtained its control limit by bootstrapping the 
Hotelling's T2 statistic (i.e. collapsing the multivariate into 
univariate). However, to address the problem of identifying 
out of control signals, this study also introduced the p-values 
method. 

A. Algorithm - Proposed Bootstrap Method for Obtaining 
Hotelling’s T2 Control Limit 

Suppose that there are  quality characteristics and each of 
the quality characteristic contains  set of observations ; 

1,2, … , ; 1,2, … ,  as can be summarized in the 
matrix:  

 
x x ⋯ x

x x ⋯ x
x x ⋯ x

⋯
x x ⋯ x

	

x
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If the matrix notations of x  dimensions can be transposed as 
expressions below: 
 

     , , … , ′; , , … , ′;  
. . . , , … , ′ 

 
The proposed bootstrap procedure for obtaining Hotelling’s T2 
control limit is as follows: 
Step1. Combine the sample sizes of , 	, … ,  of the sets of 

observation such that: 
 

, , … , ; , , … , ; … ; , , … ,  
 
Step2. Draw a bootstrap sample of size ∗ ∗, 	 ∗, … , ∗

 with replacement from Step 1   
 

∗ ∗ , ∗ , … , ∗ ; ∗ , ∗ , … , ∗ ; … ; ∗ , ∗ , … , ∗  
 

Step3. Repeat Step 2 for number of periods to obtain bootstrap 
replications as:    

  ∗

∗ , ∗ , … , ∗ ; ∗ , ∗ , … , ∗ ;… ; ∗ , ∗ , … , ∗ ,  
 
where ∗ 1,2, … , , and  is large . . , 1000 .  
Step4. Estimate the bootstrap mean vector ̅ ∗ , bootstrap

 variance and covariance matrix ∗ from the bootstrap 
sample variables in Step 3.  

Step5. Obtain the bootstrap ∗ statistic from the data set in 
Step 4 such that:  
 

∗ ∗ ̅ ∗ ∗ ∗ ̅ ∗ , 
∗ 1,2, … , ; ∗ 1,2,3, … , . 

 
Step6. Repeat the process 3000 times by changing the 

values of ∗	 	 ∗ to obtain: ∗, ∗, … , ∗     
Step7. Set the upper control limit such that in each of the

 bootstrap statistic ∗, ∗, … , ∗  arranged from the 
lowest to highest, determine the position of 1  
value as: 
 

 . # ∗, ∗, … , ∗ 	 1     (3) 
 
Step8. From the control limit established in Step 7, determine 

those variables that are under control process from 
those that are out of control process. 

B. Proposed P-Values Method in Identifying out of Control 
Signals 

The problem of identifying quality characteristic(s) that is 
(are) responsible for out of control signal(s) has been an issue 
in multivariate control charts [13]-[15]. Among the several 
graphical techniques for interpreting out of control procedures 
being proposed are the starplots and the multivariate profile 
charts [16], [17]. A very useful approach in identifying out of 
control signal is to obtain the p-values of the Hotelling’s  
statistics that reflect the contribution of each variable. 
Adopting [14], Step 1-3 were obtained while Step 4-5 were 

introduced to obtain their p-values.  
Step1. For a d-dimensional vector of quality characteristics, 

the first row is expressed as:   
    

. ;	∀ , , . ;	∀ , , , …	, . ;	∀ , , , ,…,

	 , . , . , , . , , , … , . , , ,…,   
 

Step2. Obtain f-distribution for each of  and .  terms such 
that: 

 

     ~ , , , 1; 

 
 and  

 . ~ , , , 2, 3, … , 1   

 
are used to check if the  quality characteristic is 
conforming to the association with other quality characteristics 
or not.  
Step3. Repeat Steps 1 and 2 for other rows based on the 

number of quality characteristics (d!) and obtain the 
distinct terms (d*2d-1) for both the unconditional  

and conditional .  terms. 

Step4. Obtain the bootstrap p-values for each of  and 

. 	terms such that: 
 

. . # . .
∗ ; 

 . # . .
∗

.  
 
where . .  denotes the p-value from the proposed 
method. 
Step5. Use the various  in Step 4 to assess whether 

there is a significant difference or not. If 

. . 	  value, it means that or .  is 
(are) not responsible for the out of control signal(s). 
But when . value, it means that 

 or .  is (are) responsible for the out of control 
signal(s). 

III. APPLICATION TO NUMERICAL ILLUSTRATION 

The set of data used was obtained from the production 
process of Family Delight Pure Soya Oil produced by Owel 
Industries Nig. Ltd., a Company located in Ekpoma, Edo 
State, Nigeria. From the data, four variables namely; 
phosphoric acid (milliliters), water (liters), caustic soda 
solution (kg) and industrial salt (kg) denoting X1, X2, X3 and 
X4 in that order, resulted in 45 samples as presented in Table I. 
The main reason for the data used in this study is to show the 
presence of poor quality of cooking oil sold in local markets in 
Nigeria. Another reason is the dilemma faced by Quality 
Control Officers in determining the variable that is responsible 
for the abnormal control behaviors or the choice to stop the 
entire production process. Terminating the process will result 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:12, No:4, 2018 

71International Scholarly and Scientific Research & Innovation 12(4) 2018 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
2,

 N
o:

4,
 2

01
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
08

74
8.

pd
f



 

 

in a waste of material resources, while continuing with the 
process without identifying the variable will lead to sub-

standard product. Hence, the urge to solve these problems 
gave rise to this work. 

 
TABLE I 

HOTELLING’S  STATISTIC FOR EACH SAMPLE 

Sample X1 X2 X3 X4 T2 Sample X1 X2 X3 X4 T2 Sample X1 X2 X3 X4 T2 

1 3000 94 30 5.3 2.4020 16 1050 70 20 6.2 15.2622 31 2450 88 24 5.3 1.2222 

2 2850 90 28 5.6 0.9290 17 3000 82 30 6 3.3443 32 2680 96 25 4.9 2.4449 

3 2300 92 24 5.4 0.9248 18 2850 80 31 5.2 4.1942 33 2750 100 22 6 6.8048 

4 2500 80 25 5.2 2.4761 19 2000 95 31 5 5.6474 34 2900 87 29 6.3 3.8612 

5 2750 45 27 7.5 22.0536 20 2050 86 25 5.8 1.1140 35 2850 89 30 5.1 2.3115 

6 2400 82 25 5.8 0.8169 21 2150 91 25 5.7 0.7655 36 2000 96 25 5.3 1.7741 

7 1550 80 20 5.1 9.9768 22 2060 83 28 5.4 2.0744 37 3000 99 27 6.1 5.2394 

8 2950 100 30 4.2 8.1484 23 2700 90 25 5.6 0.9296 38 2150 100 28 6 4.1281 

9 2850 93 29 6.1 3.2045 24 2800 94 25 5.3 1.6540 39 2300 101 20 5.8 7.1652 

10 2300 85 25 5.9 0.7532 25 2950 85 29 5.4 1.8868 40 2400 102 25 5.7 2.6327 

11 2250 95 25 5.5 0.7709 26 2250 86 29 5.4 1.4162 41 2600 80 28 5.2 2.2361 

12 2900 80 26 5.2 3.4285 27 2005 97 32 5.9 7.7473 42 2015 94 29 5.9 3.4720 

13 2550 87 27 5.7 0.1627 28 2010 100 24 5.6 2.8769 43 2225 90 32 6 5.4879 

14 2100 98 28 5.4 2.0305 29 3010 98 23 5 5.8388 44 2450 98 27 5.4 0.8001 
 

A. Test of Normality Assumption and Correlation 
Coefficient 

To apply any non-parametric control chart methodology, 
there is need to know whether the data satisfy the assumption 
of normal distribution or not. From the given data, the 
histogram plots against each of the quality characteristics are 
shown in Figs. 1 (a)-(d), while the test on the data normality 
assumption using Chi-Square method at alpha level of 0.05 is 
depicted in Table II.  

TABLE II 
TEST OF NORMALITY USING THE CHI – SQUARE (  ) METHOD 
Quality 

Characteristics 
  Computed P-values Significance Level () 

X1 17.2738 0.0017 0.05 

X2 347.4387 0.0000 0.05 

X3 10.4187 0.0339 0.05 

X4 10.8679 0.0280 0.05 

 

 

Fig. 1 (a) Variable (X1) phosphoric acid (milliliters) 
 

 

Fig. 1 (b) Variable (X2) water (liters) 

 

Fig. 1 (c) Variable (X3) caustic soda solution (kg) 
 

 

Fig. 1 (d) Variable (X4) industrial salt (kg) 
 

From Table II, since the p-values < 0.05, the null hypothesis 
is rejected (that the data are not different from a normal 
distribution). This assertion is also supported by the histogram 
plots, providing the basis in delivering the bootstrap method 
that does not depend on any form of assumption. Furthermore, 
to apply any multivariate control chart methodology, there is 
need to know whether there is association among the four 
variables. From the data, the correlation matrix  is given as: 

 




























0000.1068.0388.0072.0

068.00000.1020.0309.0

388.0020.0000.1040.0

072.0309.0040.00000.1

**

*

**

*

 

 
* Significant at 0.05 (i.e. p-value 0.039 < 0.05), ** Significant 
at 0.01(i.e. p-value 0.009 < 0.01). 
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The association matrix denotes that there is relationship 
among the variables, thus informing the proposed method. 
Adopting (1) and (2), the values of the Hotelling’s  statistic 
are computed on behalf of every observation as summarized 
within the final column of Table I and the control limit is 
estimated to be 11.4089 at  = 0.05 respectively. 

Similarly, the proposed bootstrap procedures presented in 

the algorithm were translated to Multivariate Bootstrap 
Control System. Bootstrap samples were replicated 3000 times 
starting with the initial set of observation and Hotelling’s  
value is computed for each sample as shown in Table III. 
Implementing Step 7 as represented by (3) of the algorithm, 
the control limit was determined to be 8.587.  

 
TABLE III 

BOOTSTRAP SAMPLE REPLICATED FROM ORIGINAL DATA AND HOTELLING’S  STATISTIC 

Sample X1 X2 X3 X4 T2 T2 Sorted 

1 2,521.11 85.444 27.6 5.624 12.607 0.06 

2 2,454.11 88.844 26.778 5.538 0.142 0.08 

3 2,508.89 91.378 27.378 5.629 6.978 0.122 

. . . . . . . 

. . . . . . . 

. . . . . . . 

2849 2,476.56 89.533 26.4 5.613 1.581 8.581 

2850 2,445.67 87.422 27.133 5.433 4.955 8.587 

2851 2,465.22 89.6 25.644 5.553 6.014 8.628 

. . . . . . . 

. . . . . . . 

. . . . . . . 

2998 2,475.33 87.822 26.044 5.711 6.947 21.813 

2999 2,485.11 91.133 26.956 5.467 3.655 22.015 

3000 2,414.67 89.822 26.4 5.671 3.362 22.041 

 
Summary of results of control limits obtained from the 

methods at α = 0.05 is shown in Table IV 
 

TABLE IV 
CONTROL LIMITS FOR THE TWO METHODS AT Α LEVEL OF 0.05 

Alpha level 
(α) 

Existing F-Distribution 
Method 

Proposed Bootstrap 
Method 

0.05 11.4089 8.5870 

IV. IDENTIFICATION AND INTERPRETATION OF OUT OF 

CONTROL SIGNALS 

Samples 5, 7 and 16 are out of control as shown in Table I. 
Therefore, the need to identify the quality characteristic(s) 
accountable for the out of control signals and this we propose 
to resolve through the use of the p-value method. Focusing on 
Sample 5 by repeating Steps 1-5, Table V shows all the 
unconditional and conditional  values and compared with 
their various p-values.  

Control limits obtained from the proposed method 
performed well when compared with the existing method as 
shown in Table IV, i.e. CL 11.4089, CL. 	8.587. From 
Table V A, the value of 	and	  of the four unconditional 

 terms associated with Sample 5 are significant, which 
means 	 	(water in liters) and 	 	(industrial salt in kg) are 
responsible for the out of control signals individually. From 
Table V A, it was observed that FCL and BCL are less than 
	and	  (i.e. 11.4089, 8.587 < 19.1183, 14.1516), hence the 

next step. A similar interpretation of results from Tables V B 
and C also shows that . , . , . , . , .  of the 1st 
conditional  terms and . , .  and .  of the 2nd 
conditional  terms respectively are significant. However, 

Table V D shows no significant difference because FCL and 
BCL are greater than the entire 3rd conditional terms (i.e. 
11.4089, 8.587 > 0.8898, 5.0433, 0.0023, 5.2888). 

 
TABLE V A 

UNCONDITIONAL  TERMS WITH P-VALUES (NUMBER OF  IN 

PARENTHESIS) 

 
Component 

Computed 
Value 

Manson Critical 
values 

Bootstrap  
P-Value 

 0.4790 4.1519 0.9723  (2917) 

 19.1183* ,, 0.0017*** (5) 

 0.0137 ,, 1.0000  (3000) 

 14.1516* ,, 0.0063*** (19) 

*Out of Control Signals  ***Significant at 0.01   
 

TABLE V B 
1ST CONDITIONAL  TERMS WITH P-VALUES (NUMBER OF .  IN 

PARENTHESIS) 

.  Component 
Computed 

.  Value 
Manson Critical 

values 
Bootstrap 
P-Value 

.  0.7498 6.7247 0.9393 (2818) 

.  0.4757 ,, 0.9723 (2917) 

.  0.9328 ,, 0.9127 (2738) 

.  19.3891* ,, 0.0017
***

 (5) 

.  19.1470* ,, 0.0017
***

 (5) 

.  9.9952* ,, 0.0263
**

 (79) 

.  0.0104 ,, 1.0000 (3000) 

.  0.0424 ,, 1.0000 (3000) 

.  0.1393 ,, 0.998  (2994) 

.  14.6054* ,, 0.005
***

 (15) 

.  5.0285 ,, 0.2595 (779) 

.  14.2773* ,, 0.005
***

  (15) 
*Out of Control Signals **Significant at 0.05  ***Significant at 0.01   
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TABLE V C 
2ND CONDITIONAL  TERMS WITH P-VALUES (NUMBER OF .  IN 

PARENTHESIS) 

.  Component 
Computed 

.  Value 
Manson Critical 

values 
Bootstrap 
P-Value 

.  0.7115 9.0824 0.9453  (2836) 

.  1.0120 ,, 0.9003  (2701) 

.  0.8002 ,, 0.9303  (2791) 

.  19.3829
*

 ,, 0.0017
***

 (5) 

.  10.0744
*

 ,, 0.0253
**

 (76) 

.  9.9802
*

 ,, 0.0263
**

 (79) 

.  0.0041 ,, 1.0000  (3000) 

.  0.0068 ,, 1.0000  (3000) 

.  0.1244 ,, 0.999   (2997) 

.  5.2907 ,, 0.238   (714) 

.  14.6018
*

 ,, 0.005
***

 (15) 

.  5.1105 ,, 0.2523   (757) 

*Out of Control Signals **Significant at 0.05  ***Significant at 0.01   
 

TABLE V D 
3RD CONDITIONAL  TERMS WITH P-VALUES (NUMBER OF .  IN 

PARENTHESIS) 

.  Component 
Computed 

.  Value 
Manson 

Critical values 
Bootstrap 
P-Value 

.  0.8898 11.4088 0.9183 (2755) 

.  5.0433 ,, 0.259 (777) 

.  0.0023 ,, 1.0000 (3000) 

.  5.2888 ,, 0.2387  (716) 

V. CONCLUSION  

This study specifically considered the bootstrap method as a 
means of determining control limits from multivariate control 
charts. Procedures that can carry out a systematic generation 
of bootstrap replications for two or more quality 
characteristics have been proposed. Nevertheless, this paper 
has also introduced the p-value technique as a means of 
identifying the variable(s) that is (are) responsible for the out 
of control signal(s). Due to the signals at X2 and X4, the 
practice in the univariate case is to terminate the procedure, 

and this will lead to misuse of available resources or abnormal 
ouput [18]. With the multivariate method, one variable being 
conditioned on the other(s) as shown in Table V, is the 
advantages of multivariate control charts; (i.e. from Table V 
D, it should be noted that the process was under control when 
simultaneously, quality characteristic X2 or X4 were imposed 
on any other quality characteristics). This outcome will 
improve the method of production in addition to prevent 
misuse of available resources [18] as well as improve the 
quality of product. 
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