Search results for: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR)
4147 Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling
Authors: A. Johannet, B. Vayssade, D. Bertin
Abstract:
Neural networks are well known for their ability to model non linear functions, but as statistical methods usually does, they use a no parametric approach thus, a priori knowledge is not obvious to be taken into account no more than the a posteriori knowledge. In order to deal with these problematics, an original way to encode the knowledge inside the architecture is proposed. This method is applied to the problem of the evapotranspiration inside karstic aquifer which is a problem of huge utility in order to deal with water resource.Keywords: Neural-Networks, Hydrology, Evapotranpiration, Hidden Function Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18064146 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20504145 Robust Artificial Neural Network Architectures
Authors: A. Schuster
Abstract:
Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.Keywords: robustness, robust artificial neural networks architectures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14064144 Implementation of Renewable Energy Technologies in Rural Africa
Authors: J. Levodo, A. Ford, I. Chaer
Abstract:
Africa enjoys some of the best solar radiation levels in the world averaging between 4-6 kWh/m2/day for most of the year and the global economic and political conditions that tend to make African countries more dependent on their own energy resources have caused growing interest in renewable energy based technologies. However to-date, implementation of modern Energy Technologies in Africa is still very low especially the use of solar conversion technologies. This paper presents literature review and analysis relating to the techno-economic feasibility of solar photovoltaic power generation in Africa. The literature is basically classified into the following four main categories. Techno-economic feasibility of solar photovoltaic power generation, design methods, performance evaluations of various systems and policy of potential future of technological development of photovoltaic (PV) in Africa by exploring the impact of alternative policy instruments and technology cost reductions on the financial viability of investing solar photovoltaic in Africa.
Keywords: Africa Solar Potential, Policy, Photovoltaic, Technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31774143 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network
Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.
Keywords: artificial neural networks, aquaculture, forced circulation hot water system,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20544142 Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
In this paper,the exponential passivity criteria for BAM neural networks with time-varying delays is studied.By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments,a novel sufficient condition is established to guarantee the exponential stability of the considered system.Finally,a numerical example is provided to illustrate the usefulness of the proposed main results
Keywords: BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19084141 Neural Network Imputation in Complex Survey Design
Authors: Safaa R. Amer
Abstract:
Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design
Keywords: Complex survey, estimate, imputation, neural networks, variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19714140 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Liyuan Wang, Shouming Zhong
Abstract:
In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.
Keywords: State estimator, Neural networks, Globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16644139 Representing Collective Unconsciousness Using Neural Networks
Authors: Pierre Abou-Haila, Richard Hall, Mark Dawes
Abstract:
Instead of representing individual cognition only, population cognition is represented using artificial neural networks whilst maintaining individuality. This population network trains continuously, simulating adaptation. An implementation of two coexisting populations is compared to the Lotka-Volterra model of predator-prey interaction. Applications include multi-agent systems such as artificial life or computer games.
Keywords: Collective unconsciousness, neural networks, adaptation, predator-prey simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18244138 Simulation Studies on Concentrating Type Solar Cookers
Authors: V. K. Krishnan, T. Balusamy
Abstract:
A solar dish collector has been designed, fabricated and tested for its performance on 10-03-2015 in Salem, Tamilnadu, India. The experiments on cooking vessels of coated and un-coated with 5 Liters capacity have been used for cooking Rice. The results are shown in graphs. The solar cooker is always capable of cooking food within the expected length of time and based on the solar radiation levels. With minimum cooking power, the coated pressure cooker of 5 Liters capacity cooks the food at faster manner. This is due to the conductivity of the coating material provided in the cooker.Keywords: Solar cooker, solar concentrator type, thermal performance, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23104137 Self-evolving Neural Networks Based On PSO and JPSO Algorithms
Authors: Abdussamad Ismail, Dong-Sheng Jeng
Abstract:
A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.
Keywords: Neural networks, Topology evolution, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18064136 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks
Authors: Yuichi Masukake, Yoshihisa Ishida
Abstract:
In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14814135 Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties
Authors: Mousavian, M. Moghimi Mofrad, M. H. Vakili, D. Ashouri, R. Alizadeh
Abstract:
The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.
Keywords: Neural Network, Net Heating Value, Crude Oil, Experimental, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15884134 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25564133 Some Aspects Regarding I. R. Absorbing Materials Based On Thin Alumina Films for Solar-Thermal Energy Conversion, Using X-Ray Diffraction Technique
Authors: Sorina Adriana Mitrea, Silvia Maria Hodorogea, Anca Duta, Luminita Isac, Elena Purghel, Mihaela Voinea
Abstract:
Solar energy is the most “available", ecological and clean energy. This energy can be used in active or passive mode. The active mode implies the transformation of solar energy into a useful energy. The solar energy can be transformed into thermal energy, using solar collectors. In these collectors, the active and the most important element is the absorber, material which performs the absorption of solar radiation and, in at the same time, limits its reflection. The paper presents some aspects regarding the IR absorbing material – a type of cermets, used as absorber in the solar collectors, by X Ray Diffraction Technique (XRD) characterization.
Keywords: Alumina films, solar energy, X-ray diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15854132 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System
Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov
Abstract:
Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IPprotocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.
Keywords: Quality of communication, IP-telephony, Fuzzy set, Fuzzy implication, Neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23474131 Solving Partially Monotone Problems with Neural Networks
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. Here we consider partially monotone problems, where the target variable depends monotonically on some of the predictor variables but not all. We propose an approach to build partially monotone models based on the convolution of monotone neural networks and kernel functions. The results from simulations and a real case study on house pricing show that our approach has significantly better performance than partially monotone linear models. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: Mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16194130 Facebook Spam and Spam Filter Using Artificial Neural Networks
Authors: Fahim A., Mutahira N. Naseem
Abstract:
Spam is any unwanted electronic message or material in any form posted too many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites Facebook become the leading one. With increase in usage different users start abusive use of Facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays Facebook users’ faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.
Keywords: Artificial neural networks, Facebook spam, social networking sites, spam filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31384129 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Nikos Mastorakis
Abstract:
Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20674128 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37784127 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function
Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi
Abstract:
Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38094126 Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay
Authors: Zixin Liu, Huawei Yang, Fangwei Chen
Abstract:
This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.
Keywords: Exponential synchronization, stochastic analysis, chaotic neural networks, neutral type system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15574125 Discrimination of Alcoholic Subjects using Second Order Autoregressive Modelling of Brain Signals Evoked during Visual Stimulus Perception
Authors: Ramaswamy Palaniappan
Abstract:
In this paper, a second order autoregressive (AR) model is proposed to discriminate alcoholics using single trial gamma band Visual Evoked Potential (VEP) signals using 3 different classifiers: Simplified Fuzzy ARTMAP (SFA) neural network (NN), Multilayer-perceptron-backpropagation (MLP-BP) NN and Linear Discriminant (LD). Electroencephalogram (EEG) signals were recorded from alcoholic and control subjects during the presentation of visuals from Snodgrass and Vanderwart picture set. Single trial VEP signals were extracted from EEG signals using Elliptic filtering in the gamma band spectral range. A second order AR model was used as gamma band VEP exhibits pseudo-periodic behaviour and second order AR is optimal to represent this behaviour. This circumvents the requirement of having to use some criteria to choose the correct order. The averaged discrimination errors of 2.6%, 2.8% and 11.9% were given by LD, MLP-BP and SFA classifiers. The high LD discrimination results show the validity of the proposed method to discriminate between alcoholic subjects.Keywords: Linear Discriminant, Neural Network, VisualEvoked Potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16114124 Estimating Reaction Rate Constants with Neural Networks
Authors: Benedek Kovacs, Janos Toth
Abstract:
Solutions are proposed for the central problem of estimating the reaction rate coefficients in homogeneous kinetics. The first is based upon the fact that the right hand side of a kinetic differential equation is linear in the rate constants, whereas the second one uses the technique of neural networks. This second one is discussed deeply and its advantages, disadvantages and conditions of applicability are analyzed in the mirror of the first one. Numerical analysis carried out on practical models using simulated data, and our programs written in Mathematica.
Keywords: Neural networks, parameter estimation, linear regression, kinetic models, reaction rate coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19934123 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30644122 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.
Keywords: Bilingual, children who stutter, children with language impairment, Hidden Markov Models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10294121 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks
Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia
Abstract:
PH, temperature and time of extraction of each stage, agitation speed and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.
Keywords: Zinc extraction, Efficiency, Neural networks, Operating condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15894120 Cloud Forest Characteristics of Khao Nan, Thailand
Authors: P. Sangarun, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
A better understanding of cloud forest characteristic in a tropical montane cloud forest at Khao Nan, Nakhon Si Thammarat on climatic, vegetation, soil and hydrology were studied during 18-21 April 2007. The results showed that as air temperature at Sanyen cloud forest increased, the percent relative humidity decreased. The amount of solar radiation at Sanyen cloud forest had a positive association with the amount of solar radiation at Parah forest. The amount of solar radiation at Sanyen cloud forest was very low with a range of 0-19 W/m2. On the other hand, the amount of solar radiation at Parah forest was high with a range of 0-1000 W/m2. There was no difference between leaf width, leaf length, leaf thickness and leaf area with increasing in elevations. As the elevations increased, bush height and tree height decreased. There was no association between bush width and bush ratio with elevation. As the elevations increased, the percent epiphyte cover and the percent soil moisture increased but water temperature, conductivity, and dissolved oxygen decreased. The percent soil moistures and organic contents were higher at elevations above 900 m than elevations below.
Keywords: Cloud forest, climate, vegetation, soil, hydrology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18724119 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network
Authors: Paul Lajbcygier, Seng Lee
Abstract:
Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.
Keywords: Artificial neural networks, co-integration, forecasting, trading rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12454118 Delay-Dependent Stability Analysis for Neural Networks with Distributed Delays
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper deals with the problem of delay-dependent stability for neural networks with distributed delays. Some new sufficient condition are derived by constructing a novel Lyapunov-Krasovskii functional approach. The criteria are formulated in terms of a set of linear matrix inequalities, this is convenient for numerically checking the system stability using the powerful MATLAB LMI Toolbox. Moreover, in order to show the stability condition in this paper gives much less conservative results than those in the literature, numerical examples are considered.
Keywords: Neural networks, Globally asymptotic stability , LMI approach, Distributed delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568