Search results for: Hydrothermal Power Systemsand Genetic Algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4794

Search results for: Hydrothermal Power Systemsand Genetic Algorithms

4644 Selective Harmonic Elimination of PWM AC/AC Voltage Controller Using Hybrid RGA-PS Approach

Authors: A. K. Al-Othman, Nabil A. Ahmed, A. M. Al-Kandari, H. K. Ebraheem

Abstract:

Selective harmonic elimination-pulse width modulation techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. Traditional optimization methods suffer from various drawbacks, such as prolonged and tedious computational steps and convergence to local optima; thus, the more the number of harmonics to be eliminated, the larger the computational complexity and time. This paper presents a novel method for output voltage harmonic elimination and voltage control of PWM AC/AC voltage converters using the principle of hybrid Real-Coded Genetic Algorithm-Pattern Search (RGA-PS) method. RGA is the primary optimizer exploiting its global search capabilities, PS is then employed to fine tune the best solution provided by RGA in each evolution. The proposed method enables linear control of the fundamental component of the output voltage and complete elimination of its harmonic contents up to a specified order. Theoretical studies have been carried out to show the effectiveness and robustness of the proposed method of selective harmonic elimination. Theoretical results are validated through simulation studies using PSIM software package.

Keywords: PWM, AC/AC voltage converters, selectiveharmonic elimination, direct search method, pattern search method, Real-coded Genetic algorithms, evolutionary algorithms andoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
4643 Economical Operation of Hydro-Thermal Power System based on Multi-path Adaptive Tabu Search

Authors: J. Kluabwang

Abstract:

An economic operation scheduling problem of a hydro-thermal power generation system has been properly solved by the proposed multipath adaptive tabu search algorithm (MATS). Four reservoirs with their own hydro plants and another one thermal plant are integrated to be a studied system used to formulate the objective function under complicated constraints, eg water managements, power balance and thermal generator limits. MATS with four subsearch units (ATSs) and two stages of discarding mechanism (DM), has been setting and trying to solve the problem through 25 trials under function evaluation criterion. It is shown that MATS can provide superior results with respect to single ATS and other previous methods, genetic algorithms (GA) and differential evolution (DE).

Keywords: Hydro-thermal scheduling problem, economic dispatch, adaptive tabu search, multipath adaptive tabu search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
4642 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
4641 Synthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
4640 Analog Circuit Design using Genetic Algorithm: Modified

Authors: Amod P. Vaze

Abstract:

Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to analog circuit design automation. These researches show a better performance due to the nature of Genetic Algorithm. In this paper a modified Genetic Algorithm is applied for analog circuit design automation. The modifications are made to the topology of the circuit. These modifications will lead to a more computationally efficient algorithm.

Keywords: Genetic algorithm, analog circuits, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
4639 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem

Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar

Abstract:

In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.

Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
4638 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability

Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil

Abstract:

Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.

Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
4637 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller

Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163
4636 UPFC Supplementary Controller Design Using Real-Coded Genetic Algorithm for Damping Low Frequency Oscillations in Power Systems

Authors: A.K. Baliarsingh, S. Panda, A.K. Mohanty, C. Ardil

Abstract:

This paper presents a systematic approach for designing Unified Power Flow Controller (UPFC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. Detailed investigations have been carried out considering the four alternatives UPFC based damping controller namely modulating index of series inverter (mB), modulating index of shunt inverter (mE), phase angle of series inverter (δB ) and phase angle of the shunt inverter (δE ). The design problem of the proposed controllers is formulated as an optimization problem and Real- Coded Genetic Algorithm (RCGA) is employed to optimize damping controller parameters. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Flexible AC Transmission Systems (FACTS), Unified Power Flow Controller (UPFC), Damping Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
4635 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

Authors: Pavel Y. Tabakov, Kevin Duffy

Abstract:

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.

Keywords: Classification, clustering, data minig, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
4634 FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm

Authors: A.M. Al-Fahed Nuseirat, R. Abu-Zitar

Abstract:

In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.

Keywords: Filter design, FIR digital filters, LCP, Ising model, MGA, Ising MGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
4633 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method

Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi

Abstract:

Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.

Keywords: Hydrothermal growth, zinc dioxide, biosensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
4632 A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem

Authors: Mohammad Mirabi

Abstract:

Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

Keywords: Hybrid genetic algorithm, Scheduling, Permutationflow-shop, Sequence dependent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
4631 Wireless Sensor Networks:A Survey on Ultra-Low Power-Aware Design

Authors: Itziar Marín, Eduardo Arceredillo, Aitzol Zuloaga, Jagoba Arias

Abstract:

Distributed wireless sensor network consist on several scattered nodes in a knowledge area. Those sensors have as its only power supplies a pair of batteries that must let them live up to five years without substitution. That-s why it is necessary to develop some power aware algorithms that could save battery lifetime as much as possible. In this is document, a review of power aware design for sensor nodes is presented. As example of implementations, some resources and task management, communication, topology control and routing protocols are named.

Keywords: Low Power Design, Power Awareness, RemoteSensing, Wireless Sensor Networks (WSN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
4630 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
4629 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy

Authors: Yongzhong Wu, Ping Ji

Abstract:

This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.

Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
4628 Optimizing the Project Delivery Time with Time Cost Trade-offs

Authors: Wei Lo, Ming-En Kuo

Abstract:

While to minimize the overall project cost is always one of the objectives of construction managers, to obtain the maximum economic return is definitely one the ultimate goals of the project investors. As there is a trade-off relationship between the project time and cost, and the project delivery time directly affects the timing of economic recovery of an investment project, to provide a method that can quantify the relationship between the project delivery time and cost, and identify the optimal delivery time to maximize economic return has always been the focus of researchers and industrial practitioners. Using genetic algorithms, this study introduces an optimization model that can quantify the relationship between the project delivery time and cost and furthermore, determine the optimal delivery time to maximize the economic return of the project. The results provide objective quantification for accurately evaluating the project delivery time and cost, and facilitate the analysis of the economic return of a project.

Keywords: Time-Cost Trade-Off, Genetic Algorithms, Resource Integration, Economic return.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
4627 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
4626 A High-Speed Multiplication Algorithm Using Modified Partial Product Reduction Tree

Authors: P. Asadee

Abstract:

Multiplication algorithms have considerable effect on processors performance. A new high-speed, low-power multiplication algorithm has been presented using modified Dadda tree structure. Three important modifications have been implemented in inner product generation step, inner product reduction step and final addition step. Optimized algorithms have to be used into basic computation components, such as multiplication algorithms. In this paper, we proposed a new algorithm to reduce power, delay, and transistor count of a multiplication algorithm implemented using low power modified counter. This work presents a novel design for Dadda multiplication algorithms. The proposed multiplication algorithm includes structured parts, which have important effect on inner product reduction tree. In this paper, a 1.3V, 64-bit carry hybrid adder is presented for fast, low voltage applications. The new 64-bit adder uses a new circuit to implement the proposed carry hybrid adder. The new adder using 80 nm CMOS technology has been implemented on 700 MHz clock frequency. The proposed multiplication algorithm has achieved 14 percent improvement in transistor count, 13 percent reduction in delay and 12 percent modification in power consumption in compared with conventional designs.

Keywords: adder, CMOS, counter, Dadda tree, encoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
4625 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
4624 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm

Authors: Mohamed E. Salem Abozaed

Abstract:

Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notching

Keywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
4623 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm

Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari

Abstract:

In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.

Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
4622 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
4621 A Hybrid Machine Learning System for Stock Market Forecasting

Authors: Rohit Choudhry, Kumkum Garg

Abstract:

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.

Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9318
4620 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
4619 Vertically Grown p–Type ZnO Nanorod on Ag Thin Film

Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung

Abstract:

A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using an ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.

Keywords: Ag–doped ZnO nanorods, Hydrothermal process, p–n homo–junction diode, p–type ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
4618 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
4617 The Hardware Implementation of a Novel Genetic Algorithm

Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras

Abstract:

This paper presents a novel genetic algorithm, termed the Optimum Individual Monogenetic Algorithm (OIMGA) and describes its hardware implementation. As the monogenetic strategy retains only the optimum individual, the memory requirement is dramatically reduced and no crossover circuitry is needed, thereby ensuring the requisite silicon area is kept to a minimum. Consequently, depending on application requirements, OIMGA allows the investigation of solutions that warrant either larger GA populations or individuals of greater length. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of existing hardware GA implementations. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space.

Keywords: Genetic algorithms, hardware-based machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
4616 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control

Authors: T. Hussein

Abstract:

In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.

Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3742
4615 Seismic Alert System based on Artificial Neural Networks

Authors: C. M. A. Robles G., R. A. Hernandez-Becerril

Abstract:

We board the problem of creating a seismic alert system, based upon artificial neural networks, trained by using the well-known back-propagation and genetic algorithms, in order to emit the alarm for the population located into a specific city, about an eminent earthquake greater than 4.5 Richter degrees, and avoiding disasters and human loses. In lieu of using the propagation wave, we employed the magnitude of the earthquake, to establish a correlation between the recorded magnitudes from a controlled area and the city, where we want to emit the alarm. To measure the accuracy of the posed method, we use a database provided by CIRES, which contains the records of 2500 quakes incoming from the State of Guerrero and Mexico City. Particularly, we performed the proposed method to generate an issue warning in Mexico City, employing the magnitudes recorded in the State of Guerrero.

Keywords: Seismic Alert System, Artificial Neural Networks, Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725