Search results for: Hydraulic servomechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 270

Search results for: Hydraulic servomechanism

120 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. It is a complex process that depends on heat and water transfer. The coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled Thermal-Hydraulic-Mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: Frost heave, numerical simulations, COMSOL software, unsaturated freezing soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 291
119 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown.

An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
118 Performance of Membrane Bioreactor (MBR) in High Phosphate Wastewater

Authors: Aida Isma M. I., Putri Razreena A. R., Rozita Omar, Azni Idris

Abstract:

This study presents the performance of membrane bioreactor in treating high phosphate wastewater. The laboratory scale MBR was operated at permeate flux of 25 L/m2.h with a hollow fiber membrane (polypropylene, approx. pore size 0.01 - 0.2 μm) at hydraulic retention time (HRT) of 12 hrs. Scanning electron microscopy (SEM) and energy diffusive X-ray (EDX) analyzer were used to characterize the membrane foulants. Results showed that the removal efficiencies of COD, TSS, NH3-N and PO4 3- were 93, 98, 80 and 30% respectively. On average 91% of influent soluble microbial products (SMP) were eliminated, with the eliminations of polysaccharides mostly above 80%. The main fouling resistance was cake resistance. It should be noted that SMP were found in major portions of mixed liquor that played a relatively significant role in membrane fouling. SEM and EDX analyses indicated that the foulants covering the membrane surfaces comprises not only organic substances but also inorganic elements including Mg, Ca, Al, K and P.

Keywords: Membrane bioreactor (MBR), membrane fouling, phosphates, soluble microbial products (SMP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370
117 A Review on Hydraulic and Morphological Characteristics in River Channels Due to Spurs

Authors: M. Alauddin, M. M. Hossain, M. N. Uddin, M. E. Haque

Abstract:

An optimal design of a spur is the first requirement to make it sustainable and function properly. In view of that, a thorough understanding to the hydro- and morpho-dynamics due to spurs is essential. This paper presents a literature review on the effect of spurs to obtain the most recent design criteria. Perpendicular and upstream aligned impermeable spurs have large disturbances to flow and less stability because of strong vortices and associated scour. Downstream aligned spurs minimize scour holes, but there is a chance of strong return current which could be controlled allowing flow through them. A series arrangement of spurs is important to have the desired results with a special care for the first one. Several equations have been presented in the paper for predicting the scour depth. But, they have to be used carefully. Different flow environments developed by spurs are favorable for various aquatic species. However, it is important to maintain almost a stable flow condition providing stable spurs.

Keywords: Bed topography, flow pattern, scour, spur.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
116 Evaluation Biofilm Sewage Treatment Plant

Authors: K. M. Shahot. I. A. Ekhmaj

Abstract:

The research study is carried out to determine the efficiency of the Biofilm sewage treatment plant which is located at the Engineering Complex-s. Wastewater analyses have been carried out at the Environmental Engineering laboratory to study the six parameters: Biochemical Oxygen Demand BOD, Chemical Oxygen Demand COD l, and Total Suspended Solids TSS, Ammoniac Nitrogen NH3-N and Phosphorous P which have been selected to determine the wastewater quality. The plant was designed to treat 750 Pe (population equivalent) at hydraulic retention time of 5 hours in the aerobic zone. The results show that Biofilm wastewater treatment plant was able to treat sewage successfully at different flow condition. The discharge has fulfilled the Malaysia Environmental of Standard A water quality. The achieved BOD removal is more than 85%, COD is more than 80%, TSS is more than 80%, NH3-N is more than 70%, and P was more than 70%. The Biofilm system provides a very efficient process for sewage treatment and it is compact in structure thus minimizes the required land area.

Keywords: Sewage, Bio film, Cosmo-Ball, Activated sludge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
115 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks

Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale

Abstract:

Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.

Keywords: Current deflecting wall, eddies, hydraulic model, macro tide, siltation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
114 Mine Production Index (MPI): New Method to Evaluate Effectiveness of Mining Machinery

Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati

Abstract:

OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPishovel has been developed by authors. This can be used for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovel can evaluate production effectiveness of shovels and can determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.

Keywords: Mining, Overall equipment efficiency (OEE), Mine Production index, Shovels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4744
113 Modeling and Simulating of Gas Turbine Cooled Blades

Authors: А. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Modeling, Simulating, Gas Turbine, Cooled Blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
112 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor

Authors: Manal A. Mohsen, Ahmed Tawfik

Abstract:

Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).

Keywords: Cake wastewater industry, chemical oxygen demand (COD), hydrogen production (HP), up-flow anaerobic staged reactor (UASR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
111 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W.Y. Li, H.T. Lin, J.H. Yang, C. Shih, S.W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN)  code was used to study the fuel rod performance during a postulated  large break loss of coolant accident (LBLOCA) in Maanshan nuclear  power plant (NPP). Previous transient results from thermal hydraulic  code, TRACE, with the same LBLOCA scenario, were used as input  boundary conditions for FRAPTRAN. The simulation results showed  that the peak cladding temperatures and the fuel centerline  temperatures were all below the 10CFR50.46 LOCA criteria. In  addition, the maximum hoop stress was 18 MPa and the oxide  thickness was 0.003mm for the present simulation cases, which are all  within the safety operation ranges. The present study confirms that this  analysis method, the FRAPTRAN code combined with TRACE, is an  appropriate approach to predict the fuel integrity under LBLOCA with  operational ECCS.

 

Keywords: —FRAPTRAN, TRACE, LOCA, PWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
110 Simulation of 3D Flow using Numerical Model at Open-channel Confluences

Authors: R.Goudarzizadeh, S.H.Mousavi Jahromi, N.Hedayat

Abstract:

This paper analytically investigates the 3D flow pattern at the confluences of two rectangular channels having 900 angles using Navier-Stokes equations based on Reynolds Stress Turbulence Model (RSM). The equations are solved by the Finite- Volume Method (FVM) and the flow is analyzed in terms of steadystate (single-phased) conditions. The Shumate experimental findings were used to test the validity of data. Comparison of the simulation model with the experimental ones indicated a close proximity between the flow patterns of the two sets. Effects of the discharge ratio on separation zone dimensions created in the main-channel downstream of the confluence indicated an inverse relation, where a decrease in discharge ratio, will entail an increase in the length and width of the separation zone. The study also found the model as a powerful analytical tool in the feasibility study of hydraulic engineering projects.

Keywords: 900 confluence angle, flow separation zone, numerical modeling, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
109 Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Gas turbine, cooled blade, nozzle blade, temperature field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
108 Experimental Investigation on Tsunami Acting on Bridges

Authors: Iman Mazinani, Zubaidah Ismail, Ahmad Mustafa Hashim, Amirreza Saba

Abstract:

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Keywords: Tsunami, bridge, horizontal force, uplift force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
107 Effect of Welding Processes on Fatigue Properties of Ti-6Al-4V Alloy Joints

Authors: T.S.Balasubramanian, V.Balasubramanian, M.A.Muthumanikkam

Abstract:

This paper reports the fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V titanium alloy. Centre cracked tensile specimens were prepared to evaluate the fatigue crack growth behaviour. A 100kN servo hydraulic controlled fatigue testing machine was used under constant amplitude uniaxial tensile load (stress ratio of 0.1 and frequency of 10 Hz). Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Critical and threshold stress intensity factor ranges were also evaluated. Fatigue crack growth behaviour of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.

Keywords: Fatigue, Non ferrous metals and alloys, welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4515
106 Mathematical Modeling of Gas Turbine Blade Cooling

Authors: А. Pashayev, C. Ardil, D. Askerov, R. Sadiqov, A. Samedov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Mathematical Modeling, Gas Turbine Blade Cooling, Neural Networks, BIEM and FDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
105 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: Seepage, soil, velocity, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
104 Evolution of Developing Flushing Cone during the Pressurized Flushing in Reservoir Storage

Authors: Meshkati M. E., Dehghani A. A., Naser G., E mamgholizadeh S., Mosaedi A.

Abstract:

Sedimentation in reservoirs and the corresponding loss of storage capacity is one of the most serious problems in dam engineering. Pressurized flushing, a way to remove sediments from the reservoir, is flushing under a pressurized flow condition and nearly constant water level. Pressurized flushing has only local effects around the outlet. Sediment in the vicinity of the outlet openings is scoured and a funnel shaped crater is created. In this study, the temporal development of flushing cone under various hydraulic conditions was studied experimentally. Time variations of parameters such as maximum length and width of flushing and also depth of scouring cone was measured. Results indicated that an increase in flow velocity (and consequently in Froude number) established new hydraulically conditions for flushing mechanism and so a sudden growth was observed in the amount of sediment released and also scouring dimenssions. In addition, a set of nondimensional relationships were identified for temporal variations of flushing scour dimenssions, which can eventuallt be used to estimate the development of flushing cone.

Keywords: Pressure Flushing, Dam, Sediment, Scouring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
103 A Tool for Modeling Slope Instability Triggered by Piping

Authors: Paola Gattinoni, Vincenzo Francani

Abstract:

The paper deals with the analysis of triggering conditions and evolution processes of piping phenomena, in relation to both mechanical and hydraulic aspects. In particular, the aim of the study is to predict slope instabilities triggered by piping, analysing the conditions necessary for a flow failure to occur. Really, the mechanical effect involved in the loads redistribution around the pipe is coupled to the drainage process arising from higher permeability of the pipe. If after the pipe formation, the drainage goes prevented for pipe clogging, the porewater pressure increase can lead to the failure or even the liquefaction, with a subsequent flow slide. To simulate the piping evolution and to verify relevant stability conditions, a iterative coupled modelling approach has been pointed out. As example, the proposed tool has been applied to the Stava Valley disaster (July, 1985), demonstrating that piping might be one of triggering phenomena of the tailings dams collapse.

Keywords: Flow failure, liquefaction, modeling, piping, porewater pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
102 New Technologies for Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R.Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Keywords: multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
101 Numerical Modeling of Gas Turbine Engines

Authors: A. Pashayev, D. Askerov, C. Ardil, R. Sadiqov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
100 Investigating what Effects Aviation Fluids Have on the Flatwise Compressive Strength of Nomex® Honeycomb Core Material

Authors: G. Kim, R. Sterkenburg

Abstract:

One of the disadvantages of honeycomb sandwich structure is that they are prone to fluid intrusion. The purpose of this study is to determine if the structural properties of honeycomb core are affected by contact with a fluid. The test specimens were manufactured of fiberglass prepreg for the facesheets and Nomex® honeycomb core for the core material in accordance with ASTM C-365/365M. Test specimens were soaked in several different kinds of fluids, such as aircraft fuel, turbine engine oil, hydraulic fluid, and water for a period of 60 days. A flatwise compressive test was performed, and the test results were analyzed to determine how the contact with aircraft fluids affected the compressive strength of the Nomex® honeycomb core and how the strength was recovered when the specimens were dry. In addition, the investigation of de-bonding between facesheet and core material after soaking were performed to support the study.

Keywords: Debonding, environmental degradation, honeycomb sandwich structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
99 Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method

Authors: Razieh Jalalabadi, Norouz Mohammad Nouri

Abstract:

Cavitation, usually known as a destructive phenomenon, involves turbulent unsteady two-phase flow. Having such features, cavitating flows have been turned to a challenging topic in numerical studies and many researches are being done for better understanding of bubbly flows and proposing solutions to reduce its consequent destructive effects. Aeration may be regarded as an effective protection against cavitation erosion in many hydraulic structures, like gated tunnels. The paper concerns numerical simulation of flow in discharge gated tunnel of a dam using ing RNG k -ε model coupled with the volume of fluid (VOF) method and the zone which is susceptible of cavitation inception in the tunnel is predicted. In the second step, a vent is considered in the mentioned zone for aeration and the numerical simulation is done again to study the effects of aeration. The results show that aeration is an impressively useful method to exclude cavitation in mentioned tunnels.

Keywords: Aeration, Cavitation, Two-phase flow, TurbulentFlow, Volume of Fluid (VOF) method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
98 Optimal Water Allocation: Sustainable Management of Dam Reservoir

Authors: Afshin Jahangirzadeh, Shatirah Akib, Babak Kamali, Sadia Rahman

Abstract:

Scarcity of water resources and huge costs of establishing new hydraulic installations necessitate optimal exploitation from existing reservoirs. Sustainable management and efficient exploitation from existing finite water resources are important factors in water resource management, particularly in the periods of water insufficiency and in dry regions, and on account of competitive allocations in the view of exploitation management. This study aims to minimize reservoir water release from a determined rate of demand. A numerical model for water optimal exploitation has been developed using GAMS introduced by the World Bank and applied to the case of Meijaran dam, northern Iran. The results indicate that this model can optimize the function of reservoir exploitation while required water for lower parts of the region will be supplied. Further, allocating optimal water from reservoir, the optimal rate of water allocated to any group of the users were specified to increase benefits in curve dam exploitation.

Keywords: Water resource management, water reservoirs, water allocation, GAMS, Meijaran dam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709
97 A New Approach of Fuzzy Methods for Evaluating of Hydrological Data

Authors: Nasser Shamskia, Seyyed Habib Rahmati, Hassan Haleh , Seyyedeh Hoda Rahmati

Abstract:

The main criteria of designing in the most hydraulic constructions essentially are based on runoff or discharge of water. Two of those important criteria are runoff and return period. Mostly, these measures are calculated or estimated by stochastic data. Another feature in hydrological data is their impreciseness. Therefore, in order to deal with uncertainty and impreciseness, based on Buckley-s estimation method, a new fuzzy method of evaluating hydrological measures are developed. The method introduces triangular shape fuzzy numbers for different measures in which both of the uncertainty and impreciseness concepts are considered. Besides, since another important consideration in most of the hydrological studies is comparison of a measure during different months or years, a new fuzzy method which is consistent with special form of proposed fuzzy numbers, is also developed. Finally, to illustrate the methods more explicitly, the two algorithms are tested on one simple example and a real case study.

Keywords: Fuzzy Discharge, Fuzzy estimation, Fuzzy ranking method, Hydrological data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
96 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
95 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
94 CFD Modeling of PROX Microreactor for Fuel Processing

Authors: M. Vahabi, M. H. Akbari

Abstract:

In order to investigate a PROX microreactor performance, two-dimensional modeling of the reacting flow between two parallel plates is performed through a finite volume method using an improved SIMPLE algorithm. A three-step surface kinetics including hydrogen oxidation, carbon monoxide oxidation and water-gas shift reaction is applied for a Pt-Fe/γ-Al2O3 catalyst and operating temperatures of about 100ºC. Flow pattern, pressure field, temperature distribution, and mole fractions of species are found in the whole domain for all cases. Also, the required reactive length for removing carbon monoxide from about 2% to less than 10 ppm is found. Furthermore, effects of hydraulic diameter, wall temperature, and inlet mole fraction of air and water are investigated by considering carbon monoxide selectivity and conversion. It is found that air and water addition may improve the performance of the microreactor in carbon monoxide removal in such operating conditions; this is in agreement with the pervious published results.

Keywords: CFD, Fuel Processing, PROX, Reacting Flow, SIMPLE algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
93 High-rate Wastewater Treatment by a Shaft-type Activated Sludge Reactor

Authors: Subrata Hait, Debabrata Mazumder

Abstract:

A shaft-type activated sludge reactor has been developed in order to study the feasibility of high-rate wastewater treatment. The reactor having volume of about 14.5 L was operated with the acclimated mixed activated sludge under batch and continuous mode using a synthetic wastewater as feed. The batch study was performed with varying chemical oxygen demand (COD) concentrations of 1000–3500 mg·L-1 for a batch period up to 9 h. The kinetic coefficients: Ks, k, Y and kd were obtained as 2040.2 mg·L-1 and 0.105 h-1, 0.878 and 0.0025 h-1 respectively from Monod-s approach. The continuous study showed a stable and steady state operation for a hydraulic retention time (HRT) of 8 h and influent COD of about 1000 mg·L-1. A maximum COD removal efficiency of about 80% was attained at a COD loading rate and food-tomicroorganism (F/M) ratio (COD basis) of 3.42 kg·m-3d-1 and 1.0 kg·kg-1d-1 respectively under a HRT of 8 h. The reactor was also found to handle COD loading rate and F/M ratio of 10.8 kg·m-3d-1 and 2.20 kg·kg-1d-1 respectively showing a COD removal efficiency of about 46%.

Keywords: Activated sludge process, shaft-type reactor, highrate treatment, carbonaceous wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3656
92 Decontamination of Cr(VI) Polluted Wastewater by use of Low Cost Industrial Wastes

Authors: Marius Gheju, Rodica Pode

Abstract:

The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the Cr(VI) concentration range of 5 – 40 mg/L. The results showed that the initial Cr(VI) concentration significantly affects the reduction capacity of scrap iron. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the Cr(VI) concentration, the greater the experiment duration with maximum scrap iron reduction capacity. However, due to passivation of active surface, scrap iron reduction capacity continuously decreased in time, especially after Cr(VI) breakthrough. The experimental results showed that highest reduction capacity recorded until Cr(VI) breakthrough was 22.8 mg Cr(VI)/g scrap iron, at CI = 5 mg/L, and decreased with increasing Cr(VI) concentration. In order to assure total reduction of greater Cr(VI) concentrations for a longer period of time, either the mass of scrap iron filling, or the hydraulic retention time should be increased.

Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
91 Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)

Authors: Rosmina Bustami, Charles Bong, Darrien Mah, Afnie Hamzah, Marina Patrick

Abstract:

The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.

Keywords: Flood, Flood mitigation structure, InfoWorks RS, Retention pond, Sarawak River sub-basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717