Search results for: Generalized differential quadrature
1016 Propagation of a Generalized Beam in ABCD System
Authors: Halil Tanyer Eyyuboğu
Abstract:
For a generalized Hermite sinosiodal / hyperbolic Gaussian beam passing through an ABCD system with a finite aperture, the propagation properties are derived using the Collins integral. The results are obtained in the form of intensity graphs indicating that previously demonstrated rules of reciprocity are applicable, while the existence of the aperture accelerates this transformation.
Keywords: Optical communications, Hermite-Gaussian beams, ABCD system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18791015 Certain Subordination Results For A Class Of Analytic Functions Defined By The Generalized Integral Operator
Authors: C. Selvaraj, K. R. Karthikeyan
Abstract:
We obtain several interesting subordination results for a class of analytic functions defined by using a generalized integral operator.Keywords: Analytic functions, Hadamard product, Subordinating factor sequence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691014 Investigation on Machine Tools Energy Consumptions
Authors: Shiva Abdoli, Daniel T. Semere
Abstract:
Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.
Keywords: Process parameters, cutting process, energy efficiency, Material Removal Rate (MRR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34151013 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method
Authors: A. Selmi
Abstract:
Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.
Keywords: Differential transformation method, functionally graded material, mode shape, natural frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7871012 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method
Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi
Abstract:
In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.
Keywords: Boundary conditions, buckling, non-local, the differential transform method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9671011 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback
Authors: M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.
Keywords: Parkinson's disease, stability, simulation, two delay differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6711010 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation
Authors: Z. El Felsoufi, L. Azrar
Abstract:
This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.
Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231009 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society
Authors: Weihua Ruan, Kuan-Chou Chen
Abstract:
This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.Keywords: Differential games, Hamilton-Jacobi-Bellman equations, infinite horizon, political-economy models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581008 Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation
Authors: Anupma Bansal, Rajeev Budhiraja, Manoj Pandey
Abstract:
In this paper, we have investigated the nonlinear time-fractional hyperbolic partial differential equation (PDE) for its symmetries and invariance properties. With the application of this method, we have tried to reduce it to time-fractional ordinary differential equation (ODE) which has been further studied for exact solutions.Keywords: Nonlinear time-fractional hyperbolic PDE, Lie Classical method, exact solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13901007 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences
Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui
Abstract:
The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.
Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6221006 A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals
Authors: V. Prapulla, A. Mitra, R. Bhattacharjee, S. Nandi
Abstract:
We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.Keywords: Adaptive decision feedback equalizer, Fractionally spaced equalizer, π/4 DQPSK signal, Digital signal processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57421005 Influences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder
Authors: Fatimah A. Alshaikh
Abstract:
This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundary conditions, is given in the form of a determinant involving Bessel functions. The roots of the frequency equation give the value of the characteristic circular frequency as function of the wave number. These roots, which correspond to various modes, are numerically computed and presented graphically for different values of the thermal relaxation times. It is found that the influences of the thermal relaxation times on the amplitudes of the elastic and thermal waves are remarkable. Also, it is shown in this study that the propagation of thermoelastic longitudinal vibrations based on the generalized thermoelasticity can differ significantly compared with the results under the classical formulation. A comparison of the results for the case with no thermal effects shows well agreement with some of the corresponding earlier results.
Keywords: Wave propagation, longitudinal vibrations, circular cylinder, generalized thermoelasticity, Thermal relaxation times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901004 Parallel Block Backward Differentiation Formulas For Solving Large Systems of Ordinary Differential Equations
Authors: Zarina Bibi, I., Khairil Iskandar, O.
Abstract:
In this paper, parallelism in the solution of Ordinary Differential Equations (ODEs) to increase the computational speed is studied. The focus is the development of parallel algorithm of the two point Block Backward Differentiation Formulas (PBBDF) that can take advantage of the parallel architecture in computer technology. Parallelism is obtained by using Message Passing Interface (MPI). Numerical results are given to validate the efficiency of the PBBDF implementation as compared to the sequential implementation.Keywords: Ordinary differential equations, parallel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751003 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method
Authors: Changqing Yang, Jianhua Hou
Abstract:
In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.
Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761002 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations
Authors: N. M. Kamoh, M. C. Soomiyol
Abstract:
In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.
Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6721001 Periodic Solutions for a Higher Order Nonlinear Neutral Functional Differential Equation
Authors: Yanling Zhu
Abstract:
In this paper, a higher order nonlinear neutral functional differential equation with distributed delay is studied by using the continuation theorem of coincidence degree theory. Some new results on the existence of periodic solutions are obtained.
Keywords: Neutral functional differential equation, higher order, periodic solution, coincidence degree theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12701000 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel
Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu
Abstract:
The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.
Keywords: Free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692999 Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute
Authors: Ashok Ganguly, Pranjali Arondekar
Abstract:
In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.
Keywords: Bézier, Circle Involute, NAUT B-Spline, Spur Gear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796998 Confidence Intervals for the Difference of Two Normal Population Variances
Authors: Suparat Niwitpong
Abstract:
Motivated by the recent work of Herbert, Hayen, Macaskill and Walter [Interval estimation for the difference of two independent variances. Communications in Statistics, Simulation and Computation, 40: 744-758, 2011.], we investigate, in this paper, new confidence intervals for the difference between two normal population variances based on the generalized confidence interval of Weerahandi [Generalized Confidence Intervals. Journal of the American Statistical Association, 88(423): 899-905, 1993.] and the closed form method of variance estimation of Zou, Huo and Taleban [Simple confidence intervals for lognormal means and their differences with environmental applications. Environmetrics 20: 172-180, 2009]. Monte Carlo simulation results indicate that our proposed confidence intervals give a better coverage probability than that of the existing confidence interval. Also two new confidence intervals perform similarly based on their coverage probabilities and their average length widths.
Keywords: Confidence interval, generalized confidence interval, the closed form method of variance estimation, variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2781997 The Global Stability Using Lyapunov Function
Authors: R. Kongnuy, E. Naowanich, T. Kruehong
Abstract:
An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158996 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Authors: R. B. Ogunrinde
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.Keywords: Differential equations, Numerical, Initial value problem, Polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775995 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053994 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations
Authors: Shishen Xie
Abstract:
In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations
Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135993 Strong Limit Theorems for Dependent Random Variables
Authors: Libin Wu, Bainian Li
Abstract:
In This Article We establish moment inequality of dependent random variables,furthermore some theorems of strong law of large numbers and complete convergence for sequences of dependent random variables. In particular, independent and identically distributed Marcinkiewicz Law of large numbers are generalized to the case of m0-dependent sequences.Keywords: Lacunary System, Generalized Gaussian, NA sequences, strong law of large numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490992 Positive Solutions of Initial Value Problem for the Systems of Second Order Integro-Differential Equations in Banach Space
Authors: Lv Yuhua
Abstract:
In this paper, by establishing a new comparison result, we investigate the existence of positive solutions for initial value problems of nonlinear systems of second order integro-differential equations in Banach space.We improve and generalize some results (see[5,6]), and the results is new even in finite dimensional spaces.
Keywords: Systems of integro-differential equations, monotone iterative method, comparison result, cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502991 Solving the Economic Dispatch Problem by Using Differential Evolution
Authors: S. Khamsawang, S. Jiriwibhakorn
Abstract:
This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693990 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations
Authors: Davod Khojasteh Salkuyeh
Abstract:
An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.
Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369989 Rate of Convergence for Generalized Baskakov-Durrmeyer Operators
Authors: Durvesh Kumar Verma, P. N. Agrawal
Abstract:
In the present paper, we consider the generalized form of Baskakov Durrmeyer operators to study the rate of convergence, in simultaneous approximation for functions having derivatives of bounded variation.
Keywords: Bounded variation, Baskakov-Durrmeyer operators, simultaneous approximation, rate of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419988 A Comparison of Marginal and Joint Generalized Quasi-likelihood Estimating Equations Based On the Com-Poisson GLM: Application to Car Breakdowns Data
Authors: N. Mamode Khan, V. Jowaheer
Abstract:
In this paper, we apply and compare two generalized estimating equation approaches to the analysis of car breakdowns data in Mauritius. Number of breakdowns experienced by a machinery is a highly under-dispersed count random variable and its value can be attributed to the factors related to the mechanical input and output of that machinery. Analyzing such under-dispersed count observation as a function of the explanatory factors has been a challenging problem. In this paper, we aim at estimating the effects of various factors on the number of breakdowns experienced by a passenger car based on a study performed in Mauritius over a year. We remark that the number of passenger car breakdowns is highly under-dispersed. These data are therefore modelled and analyzed using Com-Poisson regression model. We use the two types of quasi-likelihood estimation approaches to estimate the parameters of the model: marginal and joint generalized quasi-likelihood estimating equation approaches. Under-dispersion parameter is estimated to be around 2.14 justifying the appropriateness of Com-Poisson distribution in modelling underdispersed count responses recorded in this study.
Keywords: Breakdowns, under-dispersion, com-poisson, generalized linear model, marginal quasi-likelihood estimation, joint quasi-likelihood estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473987 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method
Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin
Abstract:
This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.
Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933