Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32299
Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel

Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu


The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.

Keywords: Free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496


[1] GM. A. Khalighi, M. Uysal, Survey on free space optical communication:A communication theory perspective, IEEE Communications Surveys and Tutorials, 16(4), pp. 22312258, 2014.
[2] Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, J. Cheng, Emerging Opti-cal Wireless Communications-Advances and Challenges, IEEE Journal on Selected Areas in Communications, 33(9), pp. 17381749, 2015.
[3] J. Perez, F. I. Chicharro, B. Ortega, J. Mora, On the evaluation of an optical OFDM radio over FSO system with IM-DD for high-speed indoor communications, in: International Conference on Transparent Optical Net-works, pp. 14, 2017.
[4] H. Kaushal, G. Kaddoum, Optical Communication in Space: Challengesand Mitigation Techniques, IEEE Communications Surveys and Tutorials, 19(1), pp. 5796, 2017.
[5] K. Anbarasi, C. Hemanth, R. Sangeetha, A review on channel models in free space optical communication systems, Optics & Laser Technology, 97, pp. 161171, 2017.
[6] R. Gupta, T. Singh Kamal, P. Singh, Concatenated LDPC-TCM Codes for Bet-ter Performance of OFDM-FSO System Using Gamma Gamma Fading Model, Wireless Personal Communications, 106(8), pp. 22472260, 2019.
[7] Prabu K, P. S. Pati, Modeling of OFDM based RoFSO system for Bhubaneswar weather conditions, Wireless Personal Communications, May (2019), pp. 121, 2019.
[8] D. Kakatia, S. C. Aryaa, Performance of 120 Gbps Single Channel Coherent DP-16-QAM in Terrestrial FSO Link under Different Weather Conditions, Optik, 178, pp. 1230-1239, 2019.
[9] M. Sultana, A. Barua, J. Akhtar, M. I. Reja, Performance Investigation of OFDM-FSO System under Diverse Weather Conditions of Bangladesh, International Journal of Electrical and Computer Engineering, 8(5), pp. 3722-3731, 2018.
[10] H. Rongqing, Z. Benyuan, H. Renxiang, T. A. Christopher, R. D. Kenneth,R. Douglas, Subcarrier multiplexing for high-speed optical transmission, Journal of Lightwave Technology, 20(3), pp. 417424, 2002.
[11] A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, M. Matsumoto, Trans-mission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma - Gamma distribution, IEEE Photonics Journal, 2(3), pp. 510520, 2010.
[12] J. Armstrong, Peak-to-average power reduction for OFDM by repeatedclipping and frequency domain filtering, Electronics Letters, 38(5), p. 246, 2002.
[13] R. Gerzaguet, N. Bartzoudis, L. G. Baltar, V. Berg, J. B. Dore, D. Ktenas, O. Font-Bach, X. Mestre, M. Payaro, M. Farber, K. Roth, The 5G candidate waveform race: a comparison of complexity and performance, Eurasip Journal on Wireless Communications and Networking, 13, Springer Open, 2017.
[14] G. Fettweis, M. Krondorf, S. Bittner, GFDM - generalized frequency division multiplexing, IEEE Vehicular Technology Conference, pp. 14, 2009.
[15] N. Michailow, S. Krone, M. Lentmaier, G. Fettweis, Bit error rate perfor-mance of generalized frequency division multiplexing, IEEE Vehicular Technology Conference, pp. 15, 2012.
[16] N. Michailow, M. Matthe, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes,A. Festag, G. Fettweis, Generalized frequency division multiplexing for 5th generation cellular networks, IEEE Transactions on Communications, 62(9), pp. 30453061, 2014.
[17] S. K. Antapurkar, A. Pandey, K. K. Gupta, GFDM performance in terms of BER, PAPR and OOB and comparison to OFDM system, IEEE AIP Conference Proceedings, pp. 16, 2016.
[18] W. D. Dias, L. L. Mendes, J. J. P. C. Rodrigues, Low complexity GFDM receiver for Frequency-Selective Channels, IEEE Communications Letters, 23, pp. 1166 1169, 2019.
[19] V. Kishore, V. V. Mani, An LED modelled GFDM for optical wireless communications, AEUE - International Journal of Electronics and Communications, 101, pp. 5461, 2019.
[20] Z. Na, J. Lv, M. Zhang, B. A. O. Peng, M. Xiong, M. Guan, GFDM Based Wireless Powered Communication for Cooperative Relay System, IEEE Access, 7, pp. 5097150979, 2019.
[21] V. Kishore, V. V. Mani, A DC Biased Optical Generalised Frequency Division Multiplexing for IM/DD systems, Physical Communication, 33, pp. 115122, 2019.
[22] Y. Wang, D. Wang, J. Ma, On the Performance of Coherent OFDM Sys-tems in Free-Space Optical Communications, IEEE Photonics Journal, 7, Open Access, 2015.
[23] N. A. Mohammed, A. S. El-Wakeel, M. H. Aly, Pointing Error in FSO Link under Different Weather Conditions, International Journal of Video & Image Processing and Network Security, 12(1), pp. 6-9, 2012.
[24] A. Yenilmez, T. Gucluoglu, P. Remlein, Performance of GFDM-maximal ratio transmission over Nakagami-m fading channels, IEEE International Symposium on Wireless Communication Systems, pp. 523527, 2016.
[25] S. K. Bandari, A. Drosopoulos, V. V. Mani, Exact SER Expressions of GFDM in Nakagami-m and Rician fading channels, 21th European Wireless Conference, pp. 16, 2015.
[26] M. P. Ninos, H. E. Nistazakis, G. S. Tombras, On the BER performance of FSO links with multiple receivers and spatial jitter over gamma-gamma or exponential turbulence channels, Optik, 138, pp. 269279, 2017.
[27] A. Farhang, N. Marchetti, L. E. Doyle, Low-Complexity Modem Design for GFDM, IEEE Transactions on Signal Processing, 64(6), pp. 15071518, 2016.