Rate of Convergence for Generalized Baskakov-Durrmeyer Operators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Rate of Convergence for Generalized Baskakov-Durrmeyer Operators

Authors: Durvesh Kumar Verma, P. N. Agrawal

Abstract:

In the present paper, we consider the generalized form of Baskakov Durrmeyer operators to study the rate of convergence, in simultaneous approximation for functions having derivatives of bounded variation.

Keywords: Bounded variation, Baskakov-Durrmeyer operators, simultaneous approximation, rate of convergence.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335292

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419

References:


[1] G. D. Bai, Y.H. Hua, S.Y. Shaw, Rate of approximation for functions with derivatives of bounded variation, Anal. Math. 28 (3) (2002), 171-196.
[2] Z. Finta, On converse approximation theorems, J. Math. Anal. Appl., 312 (1) (2005), 159-180.
[3] N. K. Govil and V. Gupta, Direct estimates in simultaneous approximation for Durrmeyer type operators, Math. Ineq. Appl., 10 (2) (2007), 371-379.
[4] V. Gupta, Rate of approximation by new sequence of linear positive operators, Comput. Math. Appl. 45(12) (2003), 1895-1904.
[5] V. Gupta, M. A. Noor, M. S. Beniwal and M. K. Gupta, On simultaneous approximation for certain Baskakov Durrmeyer type operators, J. Ineq. Pure Applied Math. 7 (4) (2006) Art. 125, 15 pp.
[6] J. Sinha, V. K. Singh, Rate of convergence on the mixed summation integral type operators, Gen. Math. 14 (4) (2006), 29-36.
[7] D. K. Verma, V. Gupta and P. N. Agrawal, Some approximation properties of Baskakov-Durrmeyer-Stancu operators, Appl. Math. Comput., 218 (11) (2012), 6549-6556.
[8] X. M. Zeng, On the rate of convergence of the generalized Sz'asz type operators for functions of bounded variation, J. Math. Anal. Appl., 226 (1998), 309-325.
[9] X. M. Zeng, W. Tao, Rate of convergence of the integral type Lupas operators, J. Kyungpook Math., 43 (2003), 593-604.
[10] X. M. Zeng, X. Cheng, Pointwise approximation by the modified Sz'asz- Mirakyan operators, J. Comput Anal. Appl., 9 (4) (2007), 421-430.