Search results for: Fracture Mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 342

Search results for: Fracture Mechanics

192 Soil Laboratory Classes in Curtin University, Australia

Authors: Amin Chegenizadeh, Hamid Nikraz

Abstract:

Soil mechanics is a traditional course in any university. Management of lab classes is one of the main issues to deliver a proper outline. In Curtin University, different methods applied to check the efficiency of these methods. One of them was mainly rely on demonstration and the other one mainly on involving students in running tests. Comparison between these delivery methods also are outlined in summary section. The recommendation also made that the more satisfaction is reachable while the students engaged.

Keywords: Soil, Geomechanic, Laboratory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
191 Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines

Authors: Alfred Hasanaj, Ardit Gjeta, Miranda Kullolli

Abstract:

The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects.

Keywords: Defects, Failure Assessment Diagrams, Safety Factor Steel Pipes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947
190 Creating Streamtubes Based on Mass Conservative Streamlines

Authors: Nawin Raj, Zhenquan Li

Abstract:

Streamtube is used to visualize expansion, contraction and various properties of the fluid flow. These are useful in fluid mechanics, engineering and geophysics. The streamtube constructed in this paper only reveals the flow expansion rate along streamline. Based on the mass conservative streamline, we will show how to construct the streamtube.

Keywords: Flow visualization, mass conservative, streamline, streamtube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
189 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene

Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi

Abstract:

In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis and tensile tests, in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.

Keywords: Failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 293
188 Introductory Design Optimisation of a Machine Tool using a Virtual Machine Concept

Authors: Johan Wall, Johan Fredin, Anders Jönsson, Göran Broman

Abstract:

Designing modern machine tools is a complex task. A simulation tool to aid the design work, a virtual machine, has therefore been developed in earlier work. The virtual machine considers the interaction between the mechanics of the machine (including structural flexibility) and the control system. This paper exemplifies the usefulness of the virtual machine as a tool for product development. An optimisation study is conducted aiming at improving the existing design of a machine tool regarding weight and manufacturing accuracy at maintained manufacturing speed. The problem can be categorised as constrained multidisciplinary multiobjective multivariable optimisation. Parameters of the control and geometric quantities of the machine are used as design variables. This results in a mix of continuous and discrete variables and an optimisation approach using a genetic algorithm is therefore deployed. The accuracy objective is evaluated according to international standards. The complete systems model shows nondeterministic behaviour. A strategy to handle this based on statistical analysis is suggested. The weight of the main moving parts is reduced by more than 30 per cent and the manufacturing accuracy is improvement by more than 60 per cent compared to the original design, with no reduction in manufacturing speed. It is also shown that interaction effects exist between the mechanics and the control, i.e. this improvement would most likely not been possible with a conventional sequential design approach within the same time, cost and general resource frame. This indicates the potential of the virtual machine concept for contributing to improved efficiency of both complex products and the development process for such products. Companies incorporating such advanced simulation tools in their product development could thus improve its own competitiveness as well as contribute to improved resource efficiency of society at large.

Keywords: Machine tools, Mechatronics, Non-deterministic, Optimisation, Product development, Virtual machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
187 Design of Polyetheretherketone Fixation Plates for Fractured Distal Femur

Authors: Abhishek Soni, Bhagat Singh

Abstract:

In the present study, a methodology has been proposed to treat fracture in the distal part of the femur bone. Initially, bone model has been developed using the computed tomography scan data of the fractured bone. This information has been further used to create polyether ether ketone (PEEK) implant for this fractured bone. Damaged bone and implant models have been assembled. This assembled model has been further analyzed for stress distribution. Moreover, deformation developed was also measured. It has been observed that the stress and deformation developed was not so appreciable. Thus, it proves that the aforementioned procedure can be suitably adopted for the treatment of fractured distal femur bone.

Keywords: Distal femur, fixation plates, PEEK, reverse engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
186 Critical Assessment of Scoring Schemes for Protein-Protein Docking Predictions

Authors: Dhananjay C. Joshi, Jung-Hsin Lin

Abstract:

Protein-protein interactions (PPI) play a crucial role in many biological processes such as cell signalling, transcription, translation, replication, signal transduction, and drug targeting, etc. Structural information about protein-protein interaction is essential for understanding the molecular mechanisms of these processes. Structures of protein-protein complexes are still difficult to obtain by biophysical methods such as NMR and X-ray crystallography, and therefore protein-protein docking computation is considered an important approach for understanding protein-protein interactions. However, reliable prediction of the protein-protein complexes is still under way. In the past decades, several grid-based docking algorithms based on the Katchalski-Katzir scoring scheme were developed, e.g., FTDock, ZDOCK, HADDOCK, RosettaDock, HEX, etc. However, the success rate of protein-protein docking prediction is still far from ideal. In this work, we first propose a more practical measure for evaluating the success of protein-protein docking predictions,the rate of first success (RFS), which is similar to the concept of mean first passage time (MFPT). Accordingly, we have assessed the ZDOCK bound and unbound benchmarks 2.0 and 3.0. We also createda new benchmark set for protein-protein docking predictions, in which the complexes have experimentally determined binding affinity data. We performed free energy calculation based on the solution of non-linear Poisson-Boltzmann equation (nlPBE) to improve the binding mode prediction. We used the well-studied thebarnase-barstarsystem to validate the parameters for free energy calculations. Besides,thenlPBE-based free energy calculations were conducted for the badly predicted cases by ZDOCK and ZRANK. We found that direct molecular mechanics energetics cannot be used to discriminate the native binding pose from the decoys.Our results indicate that nlPBE-based calculations appeared to be one of the promising approaches for improving the success rate of binding pose predictions.

Keywords: protein-protein docking, protein-protein interaction, molecular mechanics energetics, Poisson-Boltzmann calculations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
185 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: Welded steel plate, crack variation, three-dimensional Digital Image Correlation (DIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
184 Closed-Form Solutions for Nanobeams Based On the Nonlocal Euler-Bernoulli Theory

Authors: Francesco Marotti de Sciarra, Raffaele Barretta

Abstract:

Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement is presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.

Keywords: Bernoulli-Euler beams, Nanobeams, nonlocal elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
183 Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate

Authors: R. Alipour, F.Najarian

Abstract:

Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 aluminum alloy is numerically simulated and during it, explosion wave propagation process is studied. Consequences of this simulation can be effective in prediction of quality of production. These consequences are compared with an experimental test and show the superiority of this method to similar methods like hydro forming and deep drawing.

Keywords: Free explosive forming, CEL, Johnson cook.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
182 A Strategy for a Robust Design of Cracked Stiffened Panels

Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano

Abstract:

This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.

Keywords: Residual strength, R-Curve, Gurson model, SDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
181 Research on the Predict Method of Random Vibration Cumulative Fatigue Damage Life Based on the Finite Element Analysis

Authors: Wang Chengcheng, Li Chuanri, Xu Fei, Guo Ying

Abstract:

Aiming at most of the aviation products are facing the problem of fatigue fracture in vibration environment, we makes use of the testing result of a bracket, analysis for the structure with ANSYS-Workbench, predict the life of the bracket by different ways, and compared with the testing result. With the research on analysis methods, make an organic combination of simulation analysis and testing, Not only ensure the accuracy of simulation analysis and life predict, but also make a dynamic supervision of product life process, promote the application of finite element simulation analysis in engineering practice.

Keywords: Random vibration, finite element simulation, fatigue, frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4709
180 Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints

Authors: Chaitanya Sharma, Vikas Upadhyay, A. Tripathi

Abstract:

Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints.

Keywords: Friction stir welding, microstructure, tensile properties and fracture locations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
179 Micro Particles Effect on Mechanical and Thermal Properties of Ceramic Composites - A Review

Authors: S. I. Durowaye, O. P. Gbenebor, B. O. Bolasodun, I. O. Rufai, V. O. Durowaye

Abstract:

Particles are the most common and cheapest reinforcement producing discontinuous reinforced composites with isotropic properties. Conventional fabrication methods can be used to produce a wide range of product forms, making them relatively inexpensive. Optimising composite development must include consideration of all the fundamental aspect of particles including their size, shape, volume fraction, distribution and mechanical properties. Research has shown that the challenges of low fracture toughness, poor crack growth resistance and low thermal stability can be overcome by reinforcement with particles. The unique properties exhibited by micro particles reinforced ceramic composites have made them to be highly attractive in a vast array of applications.

Keywords: Ceramic composites, Mechanical properties, Microparticles, Thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
178 Unconditionally Secure Quantum Payment System

Authors: Essam Al-Daoud

Abstract:

A potentially serious problem with current payment systems is that their underlying hard problems from number theory may be solved by either a quantum computer or unanticipated future advances in algorithms and hardware. A new quantum payment system is proposed in this paper. The suggested system makes use of fundamental principles of quantum mechanics to ensure the unconditional security without prior arrangements between customers and vendors. More specifically, the new system uses Greenberger-Home-Zeilinger (GHZ) states and Quantum Key Distribution to authenticate the vendors and guarantee the transaction integrity.

Keywords: Bell state, GHZ state, Quantum key distribution, Quantum payment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
177 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment

Authors: Khaled Harrar, Rachid Jennane

Abstract:

The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an agematched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.

Keywords: Osteoporosis, fractal dimension, fractal signature, bone mineral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
176 Relating Interface Properties with Crack Propagation in Composite Laminates

Authors: Tao Qu, Chandra Prakash, Vikas Tomar

Abstract:

The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.

Keywords: Chitin, composites, interfaces, fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
175 Reliability Levels of Reinforced Concrete Bridges Obtained by Mixing Approaches

Authors: Adrián D. García-Soto, Alejandro Hernández-Martínez, Jesús G. Valdés-Vázquez, Reyna A. Vizguerra-Alvarez

Abstract:

Reinforced concrete bridges designed by code are intended to achieve target reliability levels adequate for the geographical environment where the code is applicable. Several methods can be used to estimate such reliability levels. Many of them require the establishment of an explicit limit state function (LSF). When such LSF is not available as a close-form expression, the simulation techniques are often employed. The simulation methods are computing intensive and time consuming. Note that if the reliability of real bridges designed by code is of interest, numerical schemes, the finite element method (FEM) or computational mechanics could be required. In these cases, it can be quite difficult (or impossible) to establish a close-form of the LSF, and the simulation techniques may be necessary to compute reliability levels. To overcome the need for a large number of simulations when no explicit LSF is available, the point estimate method (PEM) could be considered as an alternative. It has the advantage that only the probabilistic moments of the random variables are required. However, in the PEM, fitting of the resulting moments of the LSF to a probability density function (PDF) is needed. In the present study, a very simple alternative which allows the assessment of the reliability levels when no explicit LSF is available and without the need of extensive simulations is employed. The alternative includes the use of the PEM, and its applicability is shown by assessing reliability levels of reinforced concrete bridges in Mexico when a numerical scheme is required. Comparisons with results by using the Monte Carlo simulation (MCS) technique are included. To overcome the problem of approximating the probabilistic moments from the PEM to a PDF, a well-known distribution is employed. The approach mixes the PEM and other classic reliability method (first order reliability method, FORM). The results in the present study are in good agreement whit those computed with the MCS. Therefore, the alternative of mixing the reliability methods is a very valuable option to determine reliability levels when no close form of the LSF is available, or if numerical schemes, the FEM or computational mechanics are employed.

Keywords: Structural reliability, reinforced concrete bridges, mixing approaches, point estimate method, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
174 Repair of Concrete Structures with SCC

Authors: F. Kharchi, M. Benhadji, O. Bouksani

Abstract:

The objective of this work is to study the influence of the properties of the substrate on the retrofit (thin repair) of damaged concrete elements, with the SCC. Fluidity, principal characteristic of the SCC, would enable it to cover and adhere to the concrete to be repaired. Two aspects of repair are considered, the bond (Adhesion) and the tensile strength and the cracking. The investigation is experimental; It was conducted over test specimens made up of ordinary concrete prepared and hardened in advance (the material to be repaired) over which a self compacting concrete layer is cast. Three alternatives of SC concrete and one ordinary concrete (comparison) were tested. It appears that the self-compacting concrete constitutes a good material for repairing. It follows perfectly the surfaces- forms to be repaired and allows a perfect bond. Fracture tests made on specimens of self-compacting concrete show a brittle behaviour. However when a small percentage of fibres is added, the resistance to cracking is very much improve.

Keywords: Adhesion, concrete, experimental, repair, self-compacting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
173 SEM-EBSD Observation for Microtubes by Using Dieless Drawing Process

Authors: Takashi Sakai, Itaru Kumisawa

Abstract:

Because die drawing requires insertion of a die, a plug, or a mandrel, higher precision and efficiency are demanded for drawing equipment for a tube having smaller diameter. Manufacturing of such tubes is also accompanied by problems such as cracking and fracture. We specifically examine dieless drawing, which is less affected by these drawing-related difficulties. This deformation process is governed by a similar principle to that of reduction in diameter when pulling a heated glass tube. We conducted dieless drawing of SUS304 stainless steel microtubes under various conditions with three factor parameters of heating temperature, area reduction, and drawing speed. We used SEM-EBSD to observe the processing condition effects on microstructural elements. As the result of this study, crystallographic orientation of microtube is clear by using SEM-EBSD analysis.

Keywords: Microtube, dieless drawing, IPF, inverse pole figure, GOS, grain orientation spread, crystallographic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
172 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: Dual Phase Steel, Deformation, Acoustic Emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
171 Implementation of Meshless FEM for Engineering Applications

Authors: A. Seidl, Th. Schmidt

Abstract:

Meshless Finite Element Methods, namely element-free Galerkin and point-interpolation method were implemented and tested concerning their applicability to typical engineering problems like electrical fields and structural mechanics. A class-structure was developed which allows a consistent implementation of these methods together with classical FEM in a common framework. Strengths and weaknesses of the methods under investigation are discussed. As a result of this work joint usage of meshless methods together with classical Finite Elements are recommended.

Keywords: Finite Elements, meshless, element-free Galerkin, point-interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
170 Assembly Process Algorithms of Flexible Cell

Authors: M. Kusá, M. Matúšová, A. Javorová, K. Velí

Abstract:

This paper deals about four items assembly process of linear drive. This assembly will be realized in flexible assembly cell on Institute of Manufacturing Systems and Applied Mechanics. There is defined manufacturing cell, individual actuators created our flexible cell. Next chapter is about control type, detailed describe a sequence control type, which will be used in mentioned flexible assembly cell. All cell control is divided in individual steps instructions. There instructions illustrate table number III.

Keywords: assembly, flexible cell, sequence control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
169 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams

Authors: Z. Heirany, M. Ghaemian

Abstract:

Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.

Keywords: Numerical methods; concrete gravity dams; finiteelement method; boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
168 Elastic Failure of Web-Cracked Plate Girder

Authors: Sebastian B. Mendes

Abstract:

The presence of a vertical fatigue crack in the web of a plate girder subjected to pure bending influences the bending moment capacity of the girder. The growth of the crack may lead to premature elastic failure due to flange local yielding, flange local buckling, or web local buckling. Approximate expressions for the bending moment capacities corresponding to these failure modes were formulated. Finite element analyses were then used to validate the expressions. The expressions were employed to assess the effects of crack length on the capacity. Neglecting brittle fracture, tension buckling, and ductile failure modes, it was found that typical girders are governed by the capacity associated with flange local yielding as influenced by the crack. Concluding, a possible use of the capacity expressions in girder design was demonstrated.

Keywords: Fatigue crack, flange yielding, flange buckling, web buckling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
167 Probabilistic Approach as a Method Used in the Solution of Engineering Design for Biomechanics and Mining

Authors: Karel Frydrýšek

Abstract:

This paper focuses on the probabilistic numerical solution of the problems in biomechanics and mining. Applications of Simulation-Based Reliability Assessment (SBRA) Method are presented in the solution of designing of the external fixators applied in traumatology and orthopaedics (these fixators can be applied for the treatment of open and unstable fractures etc.) and in the solution of a hard rock (ore) disintegration process (i.e. the bit moves into the ore and subsequently disintegrates it, the results are compared with experiments, new design of excavation tool is proposed.

Keywords: probabilistic approach, engineering design, traumatology, rock mechanics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
166 Recent Advances on Computational Proteomics

Authors: Sérgio F. Sousa, Nuno M. F. S. A. Cerqueira, Marta A. S. Perez, Irina S. Moreira, António J. M.Ribeiro, Ana R. A. P. Neves, Maria J. Ramos, Pedro A. Fernandes

Abstract:

In this work we report the recent progresses that have been achieved by our group in the last half decade on the field of computational proteomics. Specifically, we discuss the application of Molecular Dynamics Simulations and Electronic Structure Calculations in drug design, in the clarification of the structural and dynamic properties of proteins and enzymes and in the understanding of the catalytic and inhibition mechanism of cancer-related enzymes. A set of examples illustrate the concepts and help to introduce the reader into this important and fast moving field.

Keywords: Enzyme, Molecular Dynamics, Protein, Quantum Mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
165 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: Border of the universe, causality violation, perfect isolation, quantum jumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
164 Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al

Authors: Samiul Kaiser, M. S. Kaiser

Abstract:

The influence of Mg and Zr addition on mechanical properties such as hardness, tensile strength and impact energy of commercially pure Al are investigated. The microstructure and fracture behavior are also studied by using Optical and Scanning Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the expense of ductility due to formation of β (Al3Mg) and β (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through grain refinement effect and the formation of metastable L12 Al3Zr precipitates. In addition, it is observed that the fractured surface of Mg added alloy is brittle and higher numbers of dimples are observed in case of Zr added alloy.

Keywords: Al-alloys, hardness, tensile strength, impact energy, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
163 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir

Abstract:

The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.

Keywords: Stress Intensity Factor (SIF), Crack orientation, Glass/Epoxy, natural Frequencies, X-FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894