Search results for: Carlo Sansour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 176

Search results for: Carlo Sansour

26 Uncertainty Propagation and Sensitivity Analysis During Calibration of an Integrated Land Use and Transport Model

Authors: Parikshit Dutta, Mathieu Saujot, Elise Arnaud, Benoit Lefevre, Emmanuel Prados

Abstract:

In this work, propagation of uncertainty during calibration process of TRANUS, an integrated land use and transport model (ILUTM), has been investigated. It has also been examined, through a sensitivity analysis, which input parameters affect the variation of the outputs the most. Moreover, a probabilistic verification methodology of calibration process, which equates the observed and calculated production, has been proposed. The model chosen as an application is the model of the city of Grenoble, France. For sensitivity analysis and uncertainty propagation, Monte Carlo method was employed, and a statistical hypothesis test was used for verification. The parameters of the induced demand function in TRANUS, were assumed as uncertain in the present case. It was found that, if during calibration, TRANUS converges, then with a high probability the calibration process is verified. Moreover, a weak correlation was found between the inputs and the outputs of the calibration process. The total effect of the inputs on outputs was investigated, and the output variation was found to be dictated by only a few input parameters.

Keywords: Uncertainty propagation, sensitivity analysis, calibration under uncertainty, hypothesis testing, integrated land use and transport models, TRANUS, Grenoble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
25 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances

Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels

Abstract:

The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.

Keywords: Prediction Model, Sensitivity Analysis, Simulation Method, USMLE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
24 Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation

Authors: Saeid Nahi, Seyed Mohammad Hossein Nabavi

Abstract:

Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need for electric consumers the efficiency is high something is important and necessary. In this context, calculating the amount of wind power to help optimize overall network, system operation, in determining the parameters of wind power is very important. In this article, to help calculate the amount of wind power plant, connected to the national network in the region Manjil wind, selecting the best type of turbine and power delivery profile appropriate to the network using Monte Carlo method has been. In this paper, wind speed data from the wind site in Manjil, as minute and during the year has been. Necessary simulations based on Random Numbers Simulation method and repeat, using the software MATLAB and Excel has been done.

Keywords: wind turbine, efficiency, wind turbine work points, Random Numbers, reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
23 Statically Fused Unbiased Converted Measurements Kalman Filter

Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou

Abstract:

Active radar and sonar systems often report Doppler measurements in addition to the position measurements such as range and bearing. The tracker can perform better by making full use of the Doppler measurements. However, due to the high nonlinearity of the Doppler measurements with respect to the target state in the Cartesian coordinate systems, those measurements are not always fully exploited. This paper mainly focuses on dealing with the Doppler measurements as well as the position measurements in Polar coordinates. The Statically Fused Converted Position and Doppler Measurements Kalman Filter (SF-CMKF) with additive debiased measurement conversion has been presented. However, the exact compensation for the bias of the measurement conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in the large angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for two-dimensional (Polar-to-Cartesian) tracking are derived, and the SF-CMKF is improved by using those conversion. Monte Carlo simulations are presented to demonstrate the statistic consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).

Keywords: Measurement conversion, Doppler, Kalman filter, estimation, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
22 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground

Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju

Abstract:

The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.

Keywords: Bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
21 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions

Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo

Abstract:

The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.

Keywords: RSM, dependent variable, independent variables, efficiency, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
20 Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac O. Asante, Yushi Jiang, Hailin Tao

Abstract:

Livestreaming marketing, the new electronic commerce element, has become an optional marketing channel following the COVID-19 pandemic, and many sellers are leveraging the features presented by livestreaming to increase sales. This study was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during livestreaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study presents a way of measuring interactions in livestreaming commerce and proposes a way to manually gather data on consumer behaviors in livestreaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: Livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147
19 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
18 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: Enhanced ideal gas molecular movement, Kriging, probability-based damage detection, probability of damage existence, surrogate modeling, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
17 Suppression of Narrowband Interference in Impulse Radio Based High Data Rate UWB WPAN Communication System Using NLOS Channel Model

Authors: Bikramaditya Das, Susmita Das

Abstract:

Study on suppression of interference in time domain equalizers is attempted for high data rate impulse radio (IR) ultra wideband communication system. The narrow band systems may cause interference with UWB devices as it is having very low transmission power and the large bandwidth. SRAKE receiver improves system performance by equalizing signals from different paths. This enables the use of SRAKE receiver techniques in IRUWB systems. But Rake receiver alone fails to suppress narrowband interference (NBI). A hybrid SRake-MMSE time domain equalizer is proposed to overcome this by taking into account both the effect of the number of rake fingers and equalizer taps. It also combats intersymbol interference. A semi analytical approach and Monte-Carlo simulation are used to investigate the BER performance of SRAKEMMSE receiver on IEEE 802.15.3a UWB channel models. Study on non-line of sight indoor channel models (both CM3 and CM4) illustrates that bit error rate performance of SRake-MMSE receiver with NBI performs better than that of Rake receiver without NBI. We show that for a MMSE equalizer operating at high SNR-s the number of equalizer taps plays a more significant role in suppressing interference.

Keywords: IR-UWB, UWB, IEEE 802.15.3a, NBI, data rate, bit error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
16 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: Numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method, FDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
15 Probabilistic Method of Wind Generation Placement for Congestion Management

Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli

Abstract:

Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.

Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
14 The Application of Real Options to Capital Budgeting

Authors: George Yungchih Wang

Abstract:

Real options theory suggests that managerial flexibility embedded within irreversible investments can account for a significant value in project valuation. Although the argument has become the dominant focus of capital investment theory over decades, yet recent survey literature in capital budgeting indicates that corporate practitioners still do not explicitly apply real options in investment decisions. In this paper, we explore how real options decision criteria can be transformed into equivalent capital budgeting criteria under the consideration of uncertainty, assuming that underlying stochastic process follows a geometric Brownian motion (GBM), a mixed diffusion-jump (MX), or a mean-reverting process (MR). These equivalent valuation techniques can be readily decomposed into conventional investment rules and “option impacts", the latter of which describe the impacts on optimal investment rules with the option value considered. Based on numerical analysis and Monte Carlo simulation, three major findings are derived. First, it is shown that real options could be successfully integrated into the mindset of conventional capital budgeting. Second, the inclusion of option impacts tends to delay investment. It is indicated that the delay effect is the most significant under a GBM process and the least significant under a MR process. Third, it is optimal to adopt the new capital budgeting criteria in investment decision-making and adopting a suboptimal investment rule without considering real options could lead to a substantial loss in value.

Keywords: real options, capital budgeting, geometric Brownianmotion, mixed diffusion-jump, mean-reverting process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769
13 Modeling Spatial Distributions of Point and Nonpoint Source Pollution Loadings in the Great Lakes Watersheds

Authors: Chansheng He, Carlo DeMarchi

Abstract:

A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal distributions of material transport in the Great Lakes Watersheds of the U.S. Multiple databases of meteorology, land use, topography, hydrography, soils, agricultural statistics, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Animal manure production was computed from tabulations of animals by zip code area for the census years of 1987, 1992, 1997, and 2002. Relative chemical loadings for agricultural land use were calculated from fertilizer and pesticide estimates by crop for the same periods. Comparison of these estimates to the monitored total phosphorous load indicates that both point and nonpoint sources are major contributors to the total nutrient loads in the study watersheds, with nonpoint sources being the largest contributor, particularly in the rural watersheds. These estimates are used as the input to the distributed water quality model for simulating pollutant transport through surface and subsurface processes to Great Lakes waters. Visualization and GIS interfaces are developed to visualize the spatial and temporal distribution of the pollutant transport in support of water management programs.

Keywords: Distributed Large Basin Runoff Model, Great LakesWatersheds, nonpoint source pollution, and point sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
12 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
11 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods

Authors: Huihai Wu, Xiaohui Liu

Abstract:

Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.

Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
10 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: Enhanced ideal gas molecular movement, ideal gas molecular movement, model updating method, probability-based damage detection, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
9 The MUST ADS Concept

Authors: J-B. Clavel, N. Thiollière, B. Mouginot

Abstract:

The presented work is motivated by a French law regarding nuclear waste management. A new conceptual Accelerator Driven System (ADS) designed for the Minor Actinides (MA) transmutation has been assessed by numerical simulation. The MUltiple Spallation Target (MUST) ADS combines high thermal power (up to 1.4 GWth) and high specific power. A 30 mA and 1 GeV proton beam is divided into three secondary beams transmitted on three liquid lead-bismuth spallation targets. Neutron and thermalhydraulic simulations have been performed with the code MURE, based on the Monte-Carlo transport code MCNPX. A methodology has been developed to define characteristic of the MUST ADS concept according to a specific transmutation scenario. The reference scenario is based on a MA flux (neptunium, americium and curium) providing from European Fast Reactor (EPR) and a plutonium multireprocessing strategy is accounted for. The MUST ADS reference concept is a sodium cooled fast reactor. The MA fuel at equilibrium is mixed with MgO inert matrix to limit the core reactivity and improve the fuel thermal conductivity. The fuel is irradiated over five years. Five years of cooling and two years for the fuel fabrication are taken into account. The MUST ADS reference concept burns about 50% of the initial MA inventory during a complete cycle. In term of mass, up to 570 kg/year are transmuted in one concept. The methodology to design the MUST ADS and to calculate fuel composition at equilibrium is precisely described in the paper. A detailed fuel evolution analysis is performed and the reference scenario is compared to a scenario where only americium transmutation is performed.

Keywords: Accelerator Driven System, double strata scenario, minor actinides, MUST, transmutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
8 Fast Return Path Planning for Agricultural Autonomous Terrestrial Robot in a Known Field

Authors: Carlo Cernicchiaro, Pedro D. Gaspar, Martim L. Aguiar

Abstract:

The agricultural sector is becoming more critical than ever in view of the expected overpopulation of the Earth. The introduction of robotic solutions in this field is an increasingly researched topic to make the most of the Earth's resources, thus going to avoid the problems of wear and tear of the human body due to the harsh agricultural work, and open the possibility of a constant careful processing 24 hours a day. This project is realized for a terrestrial autonomous robot aimed to navigate in an orchard collecting fallen peaches below the trees. When it receives the signal indicating the low battery, it has to return to the docking station where it will replace its battery and then return to the last work point and resume its routine. Considering a preset path in orchards with tree rows with variable length by which the robot goes iteratively using the algorithm D*. In case of low battery, the D* algorithm is still used to determine the fastest return path to the docking station as well as to come back from the docking station to the last work point. MATLAB simulations were performed to analyze the flexibility and adaptability of the developed algorithm. The simulation results show an enormous potential for adaptability, particularly in view of the irregularity of orchard field, since it is not flat and undergoes modifications over time from fallen branch as well as from other obstacles and constraints. The D* algorithm determines the best route in spite of the irregularity of the terrain. Moreover, in this work, it will be shown a possible solution to improve the initial points tracking and reduce time between movements.

Keywords: Path planning, fastest return path, agricultural terrestrial robot, autonomous, docking station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
7 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: Economical analysis, probability of failure, retaining walls, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
6 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
5 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
4 Fuzzy Power Controller Design for Purdue University Research Reactor-1

Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.

Abstract:

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 418
3 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris

Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini

Abstract:

International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.

Keywords: Deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624
2 Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s system. Naturally exchanged patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s system. The Probabilistic Risk Assessment (PRA) technique is utilized to assess the safety of an industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA-safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and rural areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is predicted for multiple factors distribution schemes of multi-criteria analysis. The input–output analysis is explored from the spillover effect, and we conducted Monte Carlo simulations for sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the composite index for biosphere with collective structure of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in an artistic/architectural perspective. The hypothesis is deployed to unify analytic and analogical spatial structure in development urban environments using optimization loads as an example of integrated industrial structure where the process is based on engineering topology of systems ecology.

Keywords: Spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248
1 Libretto Thematology in Rossini's Operas and Its Formation by the Composer

Authors: Areti Tziboula, Anna-Maria Rentzeperi-Tsonou

Abstract:

The present study examines the way Gioachino Rossini’s librettos are selected and formed demonstrating the evolutionary trajectory of the composer during his operatic career. Rossini, a dominant figure in the early 19th century Italian opera, is demanding in his choice of librettos and has a preference for subjects inspired by European literature, of his time or earlier. He begins his operatic career with farsae and operas buffae, but he mainly continues with operas seriae, to end it with a grand opera that conforms to the spirit of romanticism as manifested in Paris of his time. His farsae, operas buffae and comic operas in general are representative of the trends of the time: in some the irrational and the exaggeration prevail, in others the upheavals, others are semi-serious and emotional with a happy ending and others are comedies with more realistic characters, but usually the styles are mixed and complement each other. The stories that refer to his modern era unfold mocking human characters, beliefs attitudes and their expressions in every day habits, satirizing current affairs, presenting innovative elements in dramatic intervention and dealing with a variety of social and national issues. Count Ory, his final comic work, consists of a complex witty urban comic opera entwined with romantic sensitivity. The themes he chooses for his operas seriae are characterized by tragic passion, take place in the era of the Trojan War, the Roman Empire, the Middle Ages, and the Age of the Crusades and are set in Italy, England, Poland, Greece, Switzerland, Israel and Egypt. In his early works he sketches the characters remotely, objectively and with static, reflexive emotional expression and a happy ending. Then he continues with operas for the San Carlo Theater, which are characterized by experimentation and innovation to end up his Italian operatic career with the ostensibly backward but in fact tragic Semiramis followed in Paris by William Tell, his ultimate dramatic achievement. There are indirect references to burning issues of his era but the censorship of the time does not allow direct reference to topics that would upset the status quo. In addition, Rossini lives in a temporal period of peace after the Napoleonic Wars and by temperament he resists openly engaging in political strife. Furthermore, the need for survival necessitates the search for the more profitable contracts. In conclusion, Rossini, as a liberal personality, shapes his librettos without interruptions or setbacks, with ideas that come out after a lot of thought and a strong sense of purpose. He moves from the moral and aesthetic clarity of the classic tradition of his early works to a more elaborate and morally ambiguous romantic style in a moderate and hesitant way.

Keywords: Gioachino Rossini, libretto, nineteenth century music, opera.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381