%0 Journal Article
	%A J-B. Clavel and  N. Thiollière and  B. Mouginot
	%D 2012
	%J International Journal of Physical and Mathematical Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 63, 2012
	%T The MUST ADS Concept 
	%U https://publications.waset.org/pdf/14900
	%V 63
	%X The presented work is motivated by a French law
regarding nuclear waste management. A new conceptual Accelerator
Driven System (ADS) designed for the Minor Actinides (MA)
transmutation has been assessed by numerical simulation. The
MUltiple Spallation Target (MUST) ADS combines high thermal power (up to 1.4 GWth) and high specific power. A 30 mA and 1
GeV proton beam is divided into three secondary beams transmitted on three liquid lead-bismuth spallation targets. Neutron and thermalhydraulic
simulations have been performed with the code MURE, based on the Monte-Carlo transport code MCNPX. A methodology has been developed to define characteristic of the MUST ADS concept according to a specific transmutation scenario. The reference
scenario is based on a MA flux (neptunium, americium and curium)
providing from European Fast Reactor (EPR) and a plutonium multireprocessing
strategy is accounted for. The MUST ADS reference
concept is a sodium cooled fast reactor. The MA fuel at equilibrium is mixed with MgO inert matrix to limit the core reactivity and
improve the fuel thermal conductivity. The fuel is irradiated over five
years. Five years of cooling and two years for the fuel fabrication are
taken into account. The MUST ADS reference concept burns about 50% of the initial MA inventory during a complete cycle. In term of
mass, up to 570 kg/year are transmuted in one concept. The methodology to design the MUST ADS and to calculate fuel
composition at equilibrium is precisely described in the paper. A detailed fuel evolution analysis is performed and the reference scenario is compared to a scenario where only americium transmutation is performed.
	%P 351 - 356