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Abstract—Active radar and sonar systems often report Doppler
measurements in addition to the position measurements such as
range and bearing. The tracker can perform better by making
full use of the Doppler measurements. However, due to the high
nonlinearity of the Doppler measurements with respect to the target
state in the Cartesian coordinate systems, those measurements are
not always fully exploited. This paper mainly focuses on dealing
with the Doppler measurements as well as the position measurements
in Polar coordinates. The Statically Fused Converted Position and
Doppler Measurements Kalman Filter (SF-CMKF) with additive
debiased measurement conversion has been presented. However, the
exact compensation for the bias of the measurement conversion are
multiplicative and depend on the statistics of the cosine of the angle
measurement errors. As a result, the consistency and performance of
the SF-CMKF may be suboptimal in the large angle error situations.
In this paper, the multiplicative unbiased position and Doppler
measurement conversion for two-dimensional (Polar-to-Cartesian)
tracking are derived, and the SF-CMKF is improved by using those
conversion. Monte Carlo simulations are presented to demonstrate the
statistic consistency of the multiplicative unbiased conversion and the
superior performance of the modified SF-CMKF (SF-UCMKF).

Keywords—Measurement conversion, Doppler, Kalman filter,
estimation, tracking.

I. INTRODUCTION

IN practical active radar and sonar tracking systems,

measurements often include not only target position such

as range and bearing, but also Doppler velocity. The Doppler

measurements directly contain the velocity information of the

target, the tracking performance can be greatly improved by

sufficient utilization of the Doppler measurements. However,

unlike the position measurements, the Doppler measurements

have a high nonlinearity relationship with the target Cartesian

state, there are many difficulties in extracting Cartesian state

from Doppler measurements.

The Extended Kalman filter (EKF) [16], [13], [7] and

Unscented Kalman filter (UKF) [8], [10], [4] are popular

nonlinear filtering approaches for tracking, however, due to

the performance deterioration for high nonlinearity of EKF

and large calculation load of UKF, they are not applicable

for some practical tracking systems. An alternative method,

converted position measurements Kalman filter (CPMKF),

which converts the measurements into pseudo linear form in

Cartesian Coordinates and then utilizes Kalman filter to get the

estimation of target state, is proposed in [11]. But the Doppler

measurement, which contains information about target velocity

to potentially improve the tracking performance, is not used

in CPMKF.
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In order to use Doppler measurement better in tracking

filter, the converted Doppler measurement Kalman filter

(CDMKF), which uses a linear Kalman filter, instead of

nonlinear filters, to estimate pseudo states from the converted

Doppler measurements, is introduced [17]. Properly fusing the

outputs of the CDMKF and CPMKF results in the statically

fused converted measurement Kalman filter (SF-CMKF),

which produces better performance due to the shifting of

the nonlinear approximations outside the dynamic filtering

recursions.

However, the additive debiased measurement conversion

[11] is used in SF-CMKF as a fact that the exact

compensation for the bias in the Polar-to-Cartesian and

Spherical-to-Cartesian conversion are multiplicative and

determined by the statistics of the cosine of the angle

measurement errors [15]. When the azimuth measurement

errors become larger, the consistency and performance of

SF-CMKF may deteriorate.

The multiplicative unbiased method is proposed by [15],

[5] solves a compatibility problem in the derivation of the

mean and covariance of the converted measurement errors in

[15], and the converted position measurement errors have been

explored in [5], [1], [6], [9], [14]. However, the converted

Doppler measurement is not considered in them. In this paper,

the multiplicative unbiased converted Doppler measurement

and the covariance between multiplicative unbiased converted

position and Doppler measurement for 2D (Polar-to-Cartesian)

tracking are derived. Then the SF-CMKF is modified by using

the multiplicative unbiased measurement conversion derived

above. Monte Carlo simulation results illustrate the better

statistic consistency of the multiplicative unbiased conversion

and better performance of the proposed SF-UCMKF.

The rest of this paper is organized as follows. The problem

formulation for 2D tracking is presented in Section II.

The multiplicative unbiased conversion is derived in Section

III. In Section IV, the SF-UCMKF is developed. Monte

Carlo simulations are presented in Section V, followed by

conclusions in Section VI.

II. PROBLEM FORMULATION

The 2D tracking system is modeled in standard discrete-time

state-space form as

xk+1 = Φxk + Γvk (1)

zk = [rmk , θmk , ṙmk ]
′
= f(xk) +wk

= [rk, θk, ṙk]
′
+wk

(2)
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where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rk =
√

x2
k + y2k

θk = tan−1(yk/xk)

ṙk = (xkẋk + ykẏk)/
√

x2
k + y2k

wk = [r̃k, θ̃k, ˜̇rk]
′

(3)

xk = [xk, yk, ẋk, ẏk]
′

is the state vector consisting of

position and velocity along x and y directions in Cartesian

coordinates. zk = [rmk , θmk , ṙmk ]
′

is the measurement vector

consisting of range, azimuth and Doppler in polar coordinates.

Φ and Γ are the respective constant transition matrices [2].

vk and wk are mutually independent zero-mean Gaussian

random process noise and measurement noise with known

covariance Qk and Rk, respectively. r̃k, θ̃k and ˜̇rk are the

corresponding measurement noises, which are all assumed to

be zero-mean Gaussian noise with known variances σ2
r , σ2

θ

and σ2
ṙ . It’s assumed that the measurement noises are mutually

independent with the exception that r̃k and ˜̇rk are statistically

correlated [3] with correlation coefficient ρ, i.e.,

cov(r̃k, ˜̇rk) = ρσrσṙ (4)

The covariance matrix of the original measurements can be

written as

Rk =

⎡
⎣ σ2

r 0 ρσrσṙ

0 σ2
θ 0

ρσrσṙ 0 σ2
ṙ

⎤
⎦ (5)

III. MULTIPLICATIVE UNBIASED CONVERSION

The multiplicative unbiased conversion of position

measurements can be given [15] as

[
xc
k

yck

]
=

[
eσ

2
θ/2rmk cos θmk

eσ
2
θ/2rmk sin θmk

]
=

[
xk + x̃k

yk + ỹk

]
(6)

where x̃k and ỹk are the converted position measurement

errors along x and y directions in Cartesian coordinates.

We denote the mean and covariance of the converted

position measurement errors as

μp
k = [μx

k, μ
y
k]

′
(7)

and

Rp
k =

[
Rxx

k Rxy
k

Ryx
k Ryy

k

]
(8)

respectively. Then the unbiased converted position

measurement for tracking can be obtained as

zpck =

[
xc
k

yck

]
− μp

k (9)

The expressions of the elements in (7) and (8) are given [5]

as {
μx
k = (eσ

2
θ/2 − e−σ2

θ/2)rmk cos θmk

μy
k = (eσ

2
θ/2 − e−σ2

θ/2)rmk sin θmk
(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rxx
k =− e−σ2

θ (rmk )2 cos2 θmk

+ ((rmk )2 + σ2
r)(1 + e−2σ2

θ cos(2θmk ))/2

Ryy
k =− e−σ2

θ (rmk )2 sin2 θmk

+ ((rkm)2 + σ2
r)(1− e−2σ2

θ cos(2θmk ))/2

Rxy
k =Ryx

k = −e−σ2
θ (rmk )2 sin θmk cos θmk

+ ((rmk )2 + σ2
r)e

−2σ2
θ sin(2θmk )/2

(11)

With the similar method in [5], the multiplicative unbiased

conversion of Doppler measurement can be obtained as

ηck = rmk ṙmk = ηk + η̃k (12)

where ηk is the converted Doppler [17], given by

ηk = xkẋk + ykẏk (13)

and η̃k is the error in the converted Doppler measurement ηck.

Similarly, the mean and variance of the converted Doppler

measurement error can be obtained as [17]

μη
k = ρσrσṙ (14)

and
Rηη

k = (rmk )2σ2
ṙ + σ2

r(ṙ
m
k )2

+ 3(1 + ρ2)σ2
rσ

2
ṙ + 2rmk ṙmk ρσrσṙ

(15)

respectively. Then the unbiased converted Doppler

measurements for tracking can be obtained as

zηck = ηck − μη
k (16)

The measurement noises r̃k, θ̃k and ˜̇rk in polar coordinates

are assumed to be mutually independent zero-mean Gaussian

noised with known variances σ2
r , σ2

θ and σ2
ṙ with the exception

that r̃k and ˜̇rk are correlated with correlation coefficient ρ, in

this case⎧⎪⎨
⎪⎩

E[r̃2k] = σ2
r , E[˜̇r2k] = σ2

ṙ

E[r̃k ˜̇rk] = ρσrσṙ, E[r̃2k ˜̇rk] = 0, E[r̃k ˜̇r
2
k] = 0

E[sin θ̃k] = 0, E[cos θ̃k] = e−σ2
θ/2

(17)

Then the measurement-conditioned covariance between

the multiplicative unbiased converted position and Doppler

measurement can be derived as

Rxη
k = E[(x̃k − μx

k)(η̃k − μη
k)|rmk , θmk ]

= E{[e
σ2
θ
2 rmk cos θmk − (rmk − r̃k) cos(θ

m
k − θ̃k)

− (e
σ2
θ
2 − e−

σ2
θ
2 )rmk cos θmk ]

[rmk ṙmk − (rmk − r̃k)(ṙ
m
k − ˜̇rk)− ρσrσṙ]}

= e−
σ2
θ
2 (rmk cos θmk ρσrσṙ + ṙmk cos θmk σ2

r)

(18)

Ryη
k = E[(ỹk − μy

k)(η̃k − μη
k)|rmk , θmk ]

= E{[e
σ2
θ
2 rmk sin θmk − (rmk − r̃k) sin(θ

m
k − θ̃k)

− (e
σ2
θ
2 − e−

σ2
θ
2 )rmk sin θmk ]

[rmk ṙmk − (rmk − r̃k)(ṙ
m
k − ˜̇rk)− ρσrσṙ]}

= e−
σ2
θ
2 (rmk sin θmk ρσrσṙ + ṙmk sin θmk σ2

r)

(19)
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The covariance derived above can be rewritten as

Rpη
k =

[
Rxη

k

Ryη
k

]

= e−σ2
θ/2(rmk ρσrσṙ + ṙmk σ2

r)

[
cos θmk
sin θmk

] (20)

IV. SF-UCMKF DEVELOPMENT

The SF-CMKF is modified by replacing the additive

debiased conversion [17] of measurements with the

multiplicative unbiased conversion of measurements derived in

Section III. Fig. 1 illustrates the structure of the SF-UCMKF.

Fig. 1 Filtering structure of the SF-UCMKF

The original sensor measurements (i.e., range, Doppler

and angle) are divided into two parts to be processed

separately by two linear filters first. The range and Doppler

measurements are transformed to the unbiased converted

Doppler measurements by Doppler conversion and the

CDMKF is used to estimate pseudo-states. Correspondingly,

the unbiased position conversion and the CPMKF are designed

to extract target Cartesian states from the range and angle

measurements. Meanwhile, the Cartesian states from the

CPMKF are used by the CDMKF. The estimated pseudo-states

and Cartesian states are combined to fuse the final target state

estimates.

The CPMKF and CDMKF are given for derivation of the

SF-UCMKF as follows.

The state equation and measurement equation of CPMKF

can be expressed as [17]

xp
k+1 = Φpxp

k + Γpvk (21)

zpck = Hpxp
k +wp

k (22)

where (for Constant velocity model CV [12] in this paper)

Φp =

⎡
⎢⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,Γp =

⎡
⎢⎢⎣

T 2/2 0
0 T 2/2
T 0
0 T

⎤
⎥⎥⎦ (23)

vk =

[
vxk
vyk

]
,Hp =

[
1 0 0 0
0 1 0 0

]
(24)

The formulation of the CPMKF is well known, for

simplicity, the CPMKF filtering procedure is written as

[x̂p
k+1|k+1,P

p
k+1|k+1,K

p
k+1] =

KFp(zpck+1, x̂
p
k|k,P

p
k|k,Φ

p,Γp,Qk,H
p,Rp

k+1)
(25)

where x̂p
k+1|k+1, Pp

k+1|k+1, Kp
k+1, Φp, Γp, Qk and Hp stand

for the estimated state, covariance of the estimates, filtering

gain, state transition matrix, noise input matrix, covariance

of process noises, and measurement matrix, respectively. The

same definitions as in Section II apply. The superscript p
here indicates that the variables or matrixes are related to the

CPMKF.

The state equation and measurement equation of CDMKF

can be expressed as [17]

ηk+1 = Φηηk +Guk + Γxvx
k + Γsvs

k (26)

zηck = Hηηk + wη
k (27)

where

ηk =

[
ηk
η̇k

]
,G = Γs =

[
T 3/2 T 3/2
T 2 T 2

]
(28)

Φη =

[
1 T
0 1

]
,uk = E

[
(vxk)

2

(vyk)
2

]
=

[
q
q

]
(29)

Γx =

[
T 3T 2/2
0 2T

]
,vs

k =

[
(vxk)

2 − q
(vyk)

2 − q

]
(30)

vx
k = xΓvk =

[
xk yk
ẋk ẏk

] [
vxk
vyk

]
(31)

In the above, Hη = [1 0] is the measurement matrix, zηck
is the unbiased converted Doppler measurement as described

in (16), wη
k is zero-mean Gaussian measurement noise with

known variance Rηη
k given in (15).

The conditions of zero-mean and whiteness of the noises in

(30) and (31) are approximately satisfied. The covariance of

vx
k can be obtained [17] as

Qx
k = q

{[
x̂2
k x̂k

ˆ̇xk

ˆ̇xkx̂k
ˆ̇x2
k

]
+

[
ŷ2k ŷk ˆ̇yk
ˆ̇ykŷk ˆ̇y2k

]}

− q

{[
P xx
k P xẋ

k

P ẋx
k P ẋẋ

k

]
+

[
P yy
k P yẏ

k

P ẏy
k P ẏẏ

k

]} (32)

The matrix elements in (32) are the corresponding elements

of the Cartesian state estimation from the CPMKF at time k.

In other words, x̂p
k|k, Pp

k|k is required to calculate Qx
k . The

process of CPMKF is given before.

The covariance of vs
k is

Qs
k =

[
2q2 0
0 2q2

]
(33)

The implementation of CDMKF is carried out as follows

Mη
k+1 = ΦηPη

k(Φ
η)

′
+ ΓxQx

kΓ
x

′
+ ΓsQs

kΓ
s
′

(34)

Kη
k+1 = Mη

k+1H
η
′
[HηMη

k+1H
η
′
+Rηη

k+1]
−1 (35)

η̂k+1 = Φηη̂k +Guk

+Kη
k+1[z

ηc
k+1 −Hη(Φηη̂k +Guk)]

(36)

Pη
k+1 = [I−Kη

k+1H
η]Mη

k+1 (37)

With the pseudo-state η̂k+1 from the CDMKF and the

Cartesian state x̂p
k+1 from the CPMKF, the final state

estimations can be derived under the MMSE criterion as

follows.
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From the formulations of the CDMKF and CPMKF

presented above, the cross-covariance between the estimated

pseudo state from the CDMKF and the Cartesian state from

the CPMKF can be derived as

Ppη
k+1 = [I−Kp

k+1H
p]ΦpPpη

k Φη
′
(I−Kη

k+1H
η)

′

+ [I−Kp
k+1H

p]ΓpQk(Γ
xxΓ)

′
[I−Kη

k+1H
η]

′

+Kp
k+1R

pη
k+1K

η
k+1

′
(38)

Given the state estimate of the CPMKF, the prior mean of

the state to be estimated is

x̄ → x̂p
k+1 = E[xk+1|x̂p

k+1] (39)

A ”Measurement”

zk+1 → η̂k+1 = ηk+1 − η̃k+1 (40)

is made to update the state of interest.

The prior mean of measurement is given as

z̄k+1 = η̄k+1 = C(x̂p
k) +

1

2

2∑
i=1

eitr(C̈
iPp

k) (41)

where the function C is defined as

C[xk] =

[
ηk
η̇k

]
=

[
xkẋk + ykẏk

ẋ2
k + ẏ2k

]
(42)

and tr denotes the trace of matrix.

The covariance between the states to be estimated and the

”measurement” can be got as

Pxz
k = Pp

kĊ
′ −Ppη

k (43)

The covariance of the ”measurement” is

Pzz
k =ĊPp

kĊ
′
+Pη

k +
1

2

2∑
i=1

2∑
j=1

eie
′
j tr(C̈iPp

kC̈
jPp

k)

− ĊPpη
k − (ĊPpη

k )
′

(44)

In the above, the ith Cartesian basis vector ei is

e1 = [ 1 0 ]
′
, e2 = [ 0 1 ]

′
(45)

Jacobian of C is

Ċ =

[
ẋk ẏk xk yk
0 0 2ẋk 2ẏk

]
(46)

Hessian for the first element and the second element are

C̈1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , C̈2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ (47)

Then, the final state is obtained as

x̂k = x̂p
k +Pxz

k (Pxz
k )−1(η̂k − z̄k) (48)

The covariance associated with this combined estimate is

Pk = Pp
k −Pxz

k (Pzz
k )−1(Pxz

k )
′

(49)

For details of the derivations of the combination presented

above, see [17].

V. SIMULATION RESULTS

In this section the statistical consistency of the unbiased

conversion given in Section III and the performance of

SF-UCMKF derived in Section IV are tested.

A. Statistical Consistency Comparison

The simulation here is similar to that in [8]. The true

target state is at 10 km with azimuth 45◦ and Doppler

20 m/s in the plane. A 2D radar located at the origin

measures the range, azimuth and Doppler of the target. The

range measurement error is a zero-mean Gaussian noise with

standard deviation 100 m. The azimuth measurement error

is also a zero-mean Gaussian noise with varied standard

deviation between [0◦ − 30◦], and is independent of the

range measurement error. The Doppler measurement error is

a zero-mean Gaussian noise as well with standard deviation

3 m/s, and is correlated with the range measurement error

with correlation coefficient ρ = −0.9. The average normalized

conversion error square (ANCES) of the additive debiased

conversion and the multiplicative unbiased conversion over

5000 Monte Carlo runs are shown in Fig. 2. The ANCES

is defined as

ANCES =
1

Nn

N∑
i=1

(xi − x̂i)P
−1
i (xi − x̂i) (50)

where (xi − x̂i) and Pi are the state conversion error and

error covariance in the ith run, n is the state dimension, and

N is the total number of runs. If the conversion error and the

conversion variance match each other, the ANCES would be

close to 1.

0 5 10 15 20 25 30
0.95

1

1.05

1.1

1.15

1.2

1.25

AN
C

ES

Standard Deviation (Deg.)

Additive debiased
Multiplicative unbiased

Fig. 2 ANCES comparison of unbiased conversion and debiased conversion

It can be seen from Fig. 2 that both the multiplicative

unbiased conversion and additive debiased conversion perform

well for practical noise levels, but the debiased conversion

becomes inconsistent for very large noise levels owing to a

small bias in additive converted measurements.
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B. Performance Comparison in Tracking

To compare the performance of SF-UCMKF with that of

SF-CMKF in tracking, a CV model in the polar coordinate

with different azimuth measurement errors is considered.

The radar locates at the origin, which measures the range,

azimuth and Doppler at a sampling period T = 1 s. The

trajectory starts at position (10 km, 10 km) with an initial

speed (20 m/s, 20 m/s). The acceleration disturbances along

x and y directions are both independent zero-mean Gaussian

noises with a common standard deviation q = 0.01 m/s2.

The range and Doppler measurement errors are correlated

zero-mean Gaussian noised with standard deviations σr =
100 m, σṙ = 10 m/s and correlation coefficient ρ = −0.9. The

azimuth measurement error is also zero-mean Gaussian noise

and the standard deviation varies in two cases. Simulations are

performed over 100 time steps with 250 Monte Carlo runs.

In order to distinguish the performances, the relative Root

Mean Squared Error (RMSE)

RMSE of the tracking filter

standard deviation given by the PCRLB
× 100%,

is used as a metric to compare the performances of the tracking

filters. The relative RMSE of position and velocity with varied

azimuth measurement error standard deviations is illustrated as

follows. The log scale is used for the vertical axis to present

a clear comparison.

0 20 40 60 80 100

102

Scan

R
el

at
iv

e 
R

M
SE

 o
f p

os
iti

on
 (%

)

SF−CMKF
SF−UCMKF

Fig. 3 Relative RMSE of position with σθ = 0.8◦

From the above simulation results, it can be seen that

SF-UCMKF has smaller RMSE of position and velocity in

both different azimuth measurement noise conditions. As the

noise becomes larger, the relative RMSE between SF-UCMKF

and SF-CMKF goes larger as well, and the effectiveness

of SF-UCMKF is more obvious. It means that SF-UCMKF

which uses the unbiased converted measurements in this

paper is more accurate than SF-CMKF in [17]. In fact, the

difference between the multiplicative unbiased conversion in

this paper and the additive debiased conversion in [17] is small

when σθ is not very large. The additive debiased converted

measurements are slightly biased but acceptable for practical

noise levels. As σθ becomes larger, the additive debiased
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Fig. 6 Relative RMSE of velocity with σθ = 2.5◦

conversion goes to be more biased, which is revealed by the

suboptimal performance of SF-CMKF.
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VI. CONCLUSION

The multiplicative unbiased converted Doppler

measurement and the covariance between multiplicative

unbiased converted position and Doppler measurement are

derived in this paper. The unbiased conversion and the

convariance show good statistic consistency and robustness.

A filter (SF-UCMKF) which uses the unbiased converted

measurements has been proposed and has better performance

than SF-CMKF for tracking, since it uses the measurement

conversion in a more exact way.

REFERENCES

[1] S. V. Bordonaro, P. Willet and Y. Bar-Shalom, “Tracking with converted
position and Doppler measurements,” Proceedings of SPIE Conference
on Signal and Data Processing of Small Targets, Vol.81370D, 2011.

[2] Y. Bar-Shalom, X. Li, and T. Kirubarajan, “Estimation with applications
to tracking and navigation: theory, algorithms, and software,” Wiley,
Vol.53, no.6, pp.993-999, 2001.

[3] Y. Bar-Shalom, “Negative correlation and optimal tracking with range rate
measurements,” IEEE Transactions on Aerospace and Electronic Systems,
Vol.37, no.3, pp.1117-1120, 2001.

[4] L. Cui, X. Wang, Y. Xu, H. Jiang, and J. Zhou, “A novel switching
unscented Kalman filter method for remaining useful life prediction of
rolling bearing,” Measurement, Vol.135, pp.678-684, 2019.

[5] Z. Duan, C. Han, and X. Li, “Comments on unbiased converted
measurements for tracking,” IEEE Transactions on Aerospace and
Electronic Systems, Vol.40, no.4, pp.1374-1377, 2004.

[6] D. Franken, “Consistent unbiased linear filtering with polar
measurements,” International Conference on Information Fusion,
pp.1-8, 2007.

[7] R. Garcia and P. Pardal, H. Kuga, and M. Zanardi, “Nonlinear filtering for
sequential spacecraft attitude estimation with real data: Cubature Kalman
Filter, Unscented Kalman Filter and Extended Kalman Filter,” Advances
in Space Research, Vol.63, no.2, pp.1038-1050, 2019.

[8] S. Julier, and J. Uhlmann, “New extension of the Kalman filter to
nonlinear systems,” SPIE, Vol.3068, pp.182-193, 1997.

[9] S. Julier, and J. Uhlmann, “Consistent debiased method for converting
between polar and Cartesian coordinate systems,” Proceedings of the 1997
SPIE Conference on Acquisition, Tracking, and Pointing, pp.110-121,
1997.

[10] S. Julier, J. Uhlmann, and H. Durrantwhyte, “A new method for
the nonlinear transformation of means and covariances in filters and
estimators,” IEEE Transactions on Automatic Control, Vol.45, no.3,
pp.477-482, 2000.

[11] D. Lerro, and Y. Bar-Shalom, “Tracking with debiased consistent
converted measurements versus EKF,” IEEE Transactions on Aerospace
and Electronic Systems, Vol.29, no.3, pp.1015-1022, 1993.

[12] X. Li, and V. Jilkov, “A survey of maneuvering target trackingPart
I: Dynamics models,” IEEE Transactions on Aerospace and Electronic
Systems, Vol.39, no.4, pp.1333-1364, 2004.

[13] X. Lai, W. Yi, Y. Cui, C. Qin, X. Han, T. Sun, L. Zhou, and Y. Zheng,
“Capacity estimation of lithium-ion cells by combining model-based
and data-driven methods based on a sequential extended Kalman filter,”
Energy, Vol.216, 1 February, 119233, 2021.

[14] P. Suchomski, “Explicit expressions for debiased statistics of 3D
converted measurements,” IEEE Transactions on Aerospace and
Electronic Systems, Vol.35, no.1, pp.368-370, 1999.

[15] X. Song, Y. Zhou, and Y. Bar-Shalom, “Unbiased converted
measurements for tracking,” IEEE Transactions on Aerospace and
Electronic Systems, Vol.34, no.3, pp.1023-1027, 1998.

[16] J. Xiu, Y. He, G. Wang, and X. Tang, “Constellation of multisensors in
Bearing-only Location System,” IEEE Proceedings on Radar, Sonar and
Navigation, Vol.152, no.3, pp.215-218, 2005.

[17] G. Zhou, M. Pelletier, T. Kirubarajan, and T. Quan, “Statically
fused converted position and Doppler measurement Kalman filters,”
IEEE Transactions on Aerospace and Electronic Systems, Vol.50, no.1,
pp.300-318, 2014.

Zhengkun Guo received the B.E. degree from
the School of Electronic Information of Wuhan
University, Wuhan, China, in 2008 and the M.E.
degree from Shanghai Academy of Spaceflight
Technology, Shanghai, China, in 2011. From April
2011 to June 2012, he worked as an assistant
Engineer in Shanghai Academy of Spaceflight
Technology. In June 2012, he joined Huawei
Technology Co., Ltd as an Engineer research in
ASIC design and verification. He received the
Ph.D. degree from the School of Electronics and

Information Engineering, Harbin Institute of Technology, Harbin, China in
2020. From March 2016 to March 2017, supported by China Scholarship
Council, he was a visiting Ph.D. student in McMaster University, Hamilton,
Ontario, Canada.

Currently, he is working as an engineer in Radio Equipment Research
Institute, Shanghai, China. His research interests include signal processing,
estimation, tracking and information fusion.

Yanbin Li received the Ph.D. degree from the
School of Precision Instrument and Opto-Electronics
Engineering of Tianjin University, Tianjin, China.
He is currently working in Radio Equipment
Research Institute, Shanghai, China. His research
interests include payload design and radar signal
processing.

Wenqing Wang received the B.E. degree from
the School of Anhui University of Technology,
Maanshan, China, in 2013 and the M.E. degree
from Beijing Institute of Technology, Beijing, China,
in 2016. She is currently working as an Assistant
Engineer in Shanghai Academy of Spaceflight
Technology. Her research interests include signal
processing, target detection and tracking.

Bo Zou Graduated from the signal and information
processing major. He has been engaged in
the research of spaceborne microwave payload
technology for many years and has presided over
a number of provincial and ministerial research.
He is currently the member of the working group
of high-performance signal processing devices for
aerospace. His research interests include space target
imaging, space debris detection and tracking, and
has lots of contribution on these topics.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:10, 2022 

436International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

1.
pd

f


