Search results for: Medical decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2015

Search results for: Medical decision

275 Cardiovascular Modeling Software Tools in Medicine

Authors: J. Fernandez, R. Fernandez de Canete, J. Perea-Paizal, J. C. Ramos-Diaz

Abstract:

The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools.  For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others.

Keywords: Cardiovascular system, Modelica simulation software, physical modeling, teaching tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
274 Study the Effect of Ultrasonic Irradiation and Surfactant/Fe ions Weight Ratio on Morphology and Particle Size of Magnetite Nanoparticles Synthesised by co-precipitation for Medical Application

Authors: S.Saloomeh Azimipour Meibod, Peyman Pourafshary, Hamid Reza Madaah Hosseini

Abstract:

A biocompatible ferrofluid have been prepared by coprecipitation of FeCl2.4H2O and FeCl3.6H2O under ultrasonic irradiation and with NaOH as alkaline agent. Cystein was also used as capping agent in the solution. Magnetic properties of the produced ferrofluid were then determined by VSM test and magnetite nanoparticles were characterized by XRD and TEM techniques. The effect of surfactant to Fe ion weight ratio was also studied during this project by using two different amount of Dextran. Results showed the presence of a biocompatible superparamagnetic ferrofluid including magnetite nanoparticles with particle size ranging under 20 nm. The increase in the surfactant content results in the narrowing of the size distribution and reduction of the particle size and more solution stability.

Keywords: Biocompatibility, Ferrofluid, Nanoparticle, Sizedistribution, Ultrasonic irradiation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
273 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
272 Adaptive WiFi Fingerprinting for Location Approximation

Authors: Mohd Fikri Azli bin Abdullah, Khairul Anwar bin Kamarul Hatta, Esther Jeganathan

Abstract:

WiFi has become an essential technology that is widely used nowadays. It is famous due to its convenience to be used with mobile devices. This is especially true for Internet users worldwide that use WiFi connections. There are many location based services that are available nowadays which uses Wireless Fidelity (WiFi) signal fingerprinting. A common example that is gaining popularity in this era would be Foursquare. In this work, the WiFi signal would be used to estimate the user or client’s location. Similar to GPS, fingerprinting method needs a floor plan to increase the accuracy of location estimation. Still, the factor of inconsistent WiFi signal makes the estimation defer at different time intervals. Given so, an adaptive method is needed to obtain the most accurate signal at all times. WiFi signals are heavily distorted by external factors such as physical objects, radio frequency interference, electrical interference, and environmental factors to name a few. Due to these factors, this work uses a method of reducing the signal noise and estimation using the Nearest Neighbour based on past activities of the signal to increase the signal accuracy up to more than 80%. The repository yet increases the accuracy by using Artificial Neural Network (ANN) pattern matching. The repository acts as the server cum support of the client side application decision. Numerous previous works has adapted the methods of collecting signal strengths in the repository over the years, but mostly were just static. In this work, proposed solutions on how the adaptive method is done to match the signal received to the data in the repository are highlighted. With the said approach, location estimation can be done more accurately. Adaptive update allows the latest location fingerprint to be stored in the repository. Furthermore, any redundant location fingerprints are removed and only the updated version of the fingerprint is stored in the repository. How the location estimation of the user can be predicted would be highlighted more in the proposed solution section. After some studies on previous works, it is found that the Artificial Neural Network is the most feasible method to deploy in updating the repository and making it adaptive. The Artificial Neural Network functions are to do the pattern matching of the WiFi signal to the existing data available in the repository.

Keywords: Adaptive Repository, Artificial Neural Network, Location Estimation, Nearest Neighbour Euclidean Distance, WiFi RSSI Fingerprinting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3467
271 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise

Authors: Rahman Davtalab, Saba Ghotbi

Abstract:

Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach in the northeast of Florida adjacent to the Atlantic Ocean, Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24 % by the mid-21st century. 

Keywords: groundwater, surface water, Florida, retention pond, tide, sea-level rise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
270 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
269 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
268 Ultrasonic Echo Image Adaptive Watermarking Using the Just-Noticeable Difference Estimation

Authors: Amnach Khawne, Kazuhiko Hamamoto, Orachat Chitsobhuk

Abstract:

Most of the image watermarking methods, using the properties of the human visual system (HVS), have been proposed in literature. The component of the visual threshold is usually related to either the spatial contrast sensitivity function (CSF) or the visual masking. Especially on the contrast masking, most methods have not mention to the effect near to the edge region. Since the HVS is sensitive what happens on the edge area. This paper proposes ultrasound image watermarking using the visual threshold corresponding to the HVS in which the coefficients in a DCT-block have been classified based on the texture, edge, and plain area. This classification method enables not only useful for imperceptibility when the watermark is insert into an image but also achievable a robustness of watermark detection. A comparison of the proposed method with other methods has been carried out which shown that the proposed method robusts to blockwise memoryless manipulations, and also robust against noise addition.

Keywords: Medical image watermarking, Human Visual System, Image Adaptive Watermark

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
267 Experimental Parametric Investigation of Temperature Effects on 60W-QCW Diode Laser

Authors: E. Farsad, S. P. Abbasi, A. Goodarzi, M. S. Zabihi

Abstract:

Nowadays, quasi-continuous wave diode lasers are used in a widespread variety of applications. Temperature effects in these lasers can strongly influence their performance. In this paper, the effects of temperature have been experimentally investigated on different features of a 60W-QCW diode laser. The obtained results indicate that the conversion efficiency and operation voltage of diode laser decrease with the augmentation of the working temperature associated with a redshift in the laser peak wavelength. Experimental results show the emission peak wavelength of laser shifts 0.26 nm and the conversion efficiency decreases 1.76 % with the increase of temperature from 40 to 50 ̊C. Present study also shows the slope efficiency decreases gradually at low temperatures and rapidly at higher temperatures. Regarding the close dependence of the mentioned parameters to the operating temperature, it is of great importance to carefully control the working temperature of diode laser, particularly for medical applications.

Keywords: diode laser, experimentally, temperature, wavelength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
266 Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania

Authors: R.M. Kainkwa

Abstract:

The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.

Keywords: Hydro power, windy season, available wind powerdensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
265 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497
264 The Environmental Conservation Behavior of the Applied Health Science Students of Green and Clean University

Authors: Nareelux Suwannobol, Plernpit Promrak, Kiattisak Batsungnoen

Abstract:

The aim of this study was to investigate the environmental conservation behavior of the Applied Health Science students of Suranaree University of Technology, a green and clean university. The sample group was 184 Applied Health Science students (medical, nursing, and public health). A questionnaire was used to collect information. The result of the study found that the students had more negative than positive behaviors towards energy, water, and forest conservation. This result can be used as basic information for designing long-term behavior modification activities or research projects on environmental conservation. Thus Applied Health Science students will be encouraged to be conscious and also be a good example of environmental conservation behavior.

Keywords: Energy conservation behavior, Water conservationbehavior, Forest conservation behavior, Green and clean University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
263 The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Authors: J.E. Park, G.R. Kim, D.J. Yoon, C.H. Sin, I.S. Park, T.S. Bea, M.H. Lee

Abstract:

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Keywords: MWCNT, SDBS, surfactant, antibacterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3048
262 Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development.

Keywords: Food irradiation, multimedia learning tools, nuclear science, society and education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
261 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: H. AbdelRahman, S. Rostom, Y. Lotfy, S. Salah Eldeen, R. Yassein, N. Awny

Abstract:

People are growing more concerned with their appearance in today's society. But they are terrified of what they will look like after a plastic surgery. People's mental health suffers when they have accidents, burns, or genetic issues that cause them to cleave certain body parts, which makes them feel uncomfortable and unappreciated. The method provides an innovative deep learning-based technique for image inpainting that analyzes different picture structures and fixes damaged images. This study proposes a model based on the Stable Diffusion Inpainting method for in-painting medical images. One significant advancement made possible by deep neural networks is image inpainting, which is the process of reconstructing damaged and missing portions of an image. The patient can see the outcome more easily since the system uses the user's input of an image to identify a problem. It then modifies the image and outputs a fixed image.

Keywords: Generative Adversarial Network, GAN, Large Mask Inpainting, LAMA, Stable Diffusion Inpainting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119
260 Antibacterial Effect of Silver Nanoparticles on Multi Drug Resistant Pseudomonas Aeruginosa

Authors: Athirah Nur Amirulhusni, Navindra Kumari Palanisamy, Zaini Mohd-Zain, Liew Jian Ping, R.Durairaj

Abstract:

Multidrug resistant organisms have been taunting the medical world for the last few decades. Even with new antibiotics developed, resistant strains have emerged soon after. With the advancement of nanotechnology, we investigated colloidal silver nanoparticles for its antimicrobial activity against Pseudomonas aeruginosa. This organism is a multidrug resistant which contributes to the high morbidity and mortality in immunocompromised patients. Five multidrug resistant strains were used in this study. The antimicrobial effect was studied using the disc diffusion and broth dilution techniques. An inhibition zone of 11 mm was observed with 10 μg dose of the nanoparticles. The nanoparticles exhibited MIC of 50 μg/ml when added at the lag phase and the subinhibitory concentration was measured as 100 μg/ml. The MIC50 value showed to be 15 μg/ml. This study suggests that silver nanoparticles can be further developed as an antimicrobial agent, hence decreasing the burden of the multidrug resistance phenomena.

Keywords: Antimirobial activity, Multidrug resistance, Pseudomonas aeruginosa, Silver nanoparticles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5440
259 Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li

Abstract:

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.

Keywords: anisotropic diffusion, coordinate transformationdirectional derivatives, edge enhancement, hyperbolic tangentfunction, image denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
258 Heat Recovery System from Air-Cooled Chillers in Iranian Hospitals

Authors: Saeed Vahidifar, Mohammad Nakhaee Sharif, Mohammad Ghaffari

Abstract:

Few people would dispute the fact that one of the most common applications of energy is creating comfort in buildings, so it is probably true to say that management of energy consumption is required due to the environmental issues and increasing the efficiency of mechanical systems. From the geographical point of view, Iran is located in a warm and semi-arid region; therefore, air-cooled chillers are usually used for cooling residential buildings, commercial buildings, medical buildings, etc. In this study, a heat exchanger was designed for providing laundry hot water by utilizing condenser heat lost base on analytical results of a 540-bed hospital in the city of Mashhad in Iran. In this paper, by using the analytical method, energy consumption reduces about 13%, and coefficient of performance increases a bit. Results show that this method can help in the management of energy consumption a lot.

Keywords: Energy management, air-cooled chiller, heat exchanger, hospital laundry system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
257 Hepatitis B Virus Infection among Egyptian Children Vaccinated during Infancy

Authors: Iman I. Salama, Samia M. Sami, Somaia I. Salama, Zeinab N. Said, Thanaa M. Rabah, Aida M. Abdel-Mohsin

Abstract:

This is a national community based project to evaluate effectiveness of HBV vaccination program in prevention of infection. HBV markers were tested in the sera of 3600 vaccinated children. Infected children were followed up for 1 year. Prevalence of HBV infection was 0.39 % (0.28% positive for anti-HBc, 0.03% positive for HBsAg and 0.08% positive for both). One year later, 50% of positive anti-HBc children turned negative with sustained positivity for positive HBsAg cases. HBV infection was significantly higher at age above 9 years (0.6%) compared to 0.2% at age 3-9 years and 0% at younger age (P<0.05). Logistic analysis revealed that predictors for HBV infection were history of blood transfusion, regular medical injection, and family history of either HBV infection or drug abuse (adjusted odds ratios 6.2, 5.6, 7.6 & 19.1 respectively). HBV vaccination program produced adequate protection. Adherence to infection control measures and safe blood transfusion are recommended.

Keywords: Children, Egypt, HBV Infection, HBV Vaccine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
256 Microorganisms Isolated from Surgical Wounds Infection and Treatment with Different Natural Products and Medications

Authors: Amany S. Youssef, Suzan A.M. El Feky, Samy A. El-Asser, Rasha A.M. Abd Allah

Abstract:

Surgical site infections (SSIs) are the most common nosocomial infection in surgical patients resulting in significant increases in postoperative morbidity and mortality. The commonly causative bacteria developed resistance to virtually all antibiotics available. The aim of this study was to isolation and identification the most common bacteria that cause SSIs in Medical Research Institute, and to compare their sensitivity to selected group of antibiotics and natural products (garlic, oregano, olive, and Nigella sativa oils). The isolated pathogens collected from infected surgical wounds were identified, and their sensitivities to the antibiotics commonly available for clinical use, and also to the different concentrations of the used natural products were investigated. The results indicate to the potential therapeutic effect of the tested natural products in treatment of surgical wound infections.

Keywords: Surgical wounds, multi-resistant bacteria, bacterial sensitivity, natural oils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
255 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms

Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova

Abstract:

The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.

Keywords: Bioregions, ecological monitoring, phytoplankton, remote sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
254 Designing Transcutaneous Inductive Powering Links for Implanted Micro-System Device

Authors: Saad Mutashar Abbas, M. A. Hannan, S. A. Samad, A. Hussain

Abstract:

This paper presented a proposed design for transcutaneous inductive powering links. The design used to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 13.56 MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 13 % and the modulation rate 7.3% with data rate 1 Mbit/s assuming Tbit=1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation the electronic workbench MULISIM 11 has been used. The novel circular plane (pancake) coils was simulated using ANSOFT- HFss software.

Keywords: Implanted devices, ASK techniques, Class-E power amplifier, Inductive powering and low-frequency ISM band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
253 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation

Authors: Ketan Naik, P. H. Bhathawala

Abstract:

The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.

Keywords: Cardiovascular system, lumped parameter method, mathematical modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3371
252 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of the CSC modeling research accommodates conceptual or process models which present general management frameworks and do not relate to acknowledged soft Operations Research methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, objectives, modeling approach, solution methods and software used. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop optimization models for integrated CSCM. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without translating the generic concepts to the context of construction industry.

Keywords: Construction supply chain management, modeling, operations research, optimization and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
251 Retrieving Similar Segmented Objects Using Motion Descriptors

Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou

Abstract:

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
250 Policy of Tourism and Opportunities of Development of Wellness Industry in Georgia

Authors: G. Erkomaishvili, R. Gvelesiani, E. Kharaishvili, M. Chavleishvili

Abstract:

The topic reviews the situation existing currently in Georgia in the field of tourism in conditions of globalization: Touristic resources, the paces of development of the tourism infrastructure, tourism policy, possibilities of development of the Wellness industry in Georgia, that is the newest direction of the medical tourism. The factors impeding the development of the industry of tourism, namely – existence of the conflict zones, high rates of the bank credits, deficiencies associated with the tax laws, a level of infrastructural development, quality of services, deficit in the competitive staff, increase of prices in the peak seasons, insufficient promotion of the touristic opportunities of Georgia on the international markets are studied and analyzed. Besides, the level of development of tourism in Georgia according to the World Economic Forum, aspects of cooperation with the European Union, etc., is reviewed. As a result of these studies, a strategy of development of tourism and one of its direction – Wellness industry in Georgia, is introduced with the relevant conclusions, on which basis the recommendations are provided.

Keywords: Tourism, Tourism Policy, Wellness Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
249 Retrieval Augmented Generation against the Machine: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLMs is exciting, such models do have their downsides. LLMs cannot easily expand or revise their memory, and they cannot straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: Retrieval Augmented Generation, Governance Risk and Compliance, Cybersecurity, AI-driven Compliance, Risk Management, Generative AI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156
248 The Effect of Relaxation Training on First Year Nursing Students Anxiety in Clinical Setting

Authors: S. Ahmadnejad, Z. Monjamed, M. Pakravannejad, A. Malekian

Abstract:

The investigating and assessing the effects of relaxation training on the levels of state anxiety concerning first year female nursing students at their initial experience in clinical setting. This research is a quasi experimental study that was carried out in nursing and midwifery faculty of Tehran university of medical sciences .The sample of research consists 60 first term female nursing students were selected through convenience and random sampling. 30 of them were the experimental group and 30 of them were in control group. The Instruments of data-collection has been a questionnaire which consists of 3 parts. The first part includes 10 questions about demographic characteristics .the second part includes 20 question about anxiety (test 'Spielberg' ). The 3rd part includes physiological indicators of anxiety (BP, P, R, body temperature). The statistical tests included t-test and  and fisher test, Data were analyzed by SPSS software.

Keywords: Anxiety, Nursing students, Relaxation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
247 The Impact of Supply Chain Strategy and Integration on Supply Chain Performance: Supply Chain Vulnerability as a Moderator

Authors: Yi-Chun Kuo, Jo-Chieh Lin

Abstract:

The objective of a supply chain strategy is to reduce waste and increase efficiency to attain cost benefits, and to guarantee supply chain flexibility when facing the ever-changing market environment in order to meet customer requirements. Strategy implementation aims to fulfill common goals and attain benefits by integrating upstream and downstream enterprises, sharing information, conducting common planning, and taking part in decision making, so as to enhance the overall performance of the supply chain. With the rise of outsourcing and globalization, the increasing dependence on suppliers and customers and the rapid development of information technology, the complexity and uncertainty of the supply chain have intensified, and supply chain vulnerability has surged, resulting in adverse effects on supply chain performance. Thus, this study aims to use supply chain vulnerability as a moderating variable and apply structural equation modeling (SEM) to determine the relationships among supply chain strategy, supply chain integration, and supply chain performance, as well as the moderating effect of supply chain vulnerability on supply chain performance. The data investigation of this study was questionnaires which were collected from the management level of enterprises in Taiwan and China, 149 questionnaires were received. The result of confirmatory factor analysis shows that the path coefficients of supply chain strategy on supply chain integration and supply chain performance are positive (0.497, t= 4.914; 0.748, t= 5.919), having a significantly positive effect. Supply chain integration is also significantly positively correlated to supply chain performance (0.192, t = 2.273). The moderating effects of supply chain vulnerability on supply chain strategy and supply chain integration to supply chain performance are significant (7.407; 4.687). In Taiwan, 97.73% of enterprises are small- and medium-sized enterprises (SMEs) focusing on receiving original equipment manufacturer (OEM) and original design manufacturer (ODM) orders. In order to meet the needs of customers and to respond to market changes, these enterprises especially focus on supply chain flexibility and their integration with the upstream and downstream enterprises. According to the observation of this research, the effect of supply chain vulnerability on supply chain performance is significant, and so enterprises need to attach great importance to the management of supply chain risk and conduct risk analysis on their suppliers in order to formulate response strategies when facing emergency situations. At the same time, risk management is incorporated into the supply chain so as to reduce the effect of supply chain vulnerability on the overall supply chain performance.

Keywords: Supply chain integration, supply chain performance, supply chain vulnerability, structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
246 A Pre-Assessment Questionnaire to Identify Healthcare Professionals’ Perception on Information Technology Implementation

Authors: Y. Atilgan Şengül

Abstract:

Health information technologies promise higher quality, safer care and much more for both patients and professionals. Despite their promise, they are costly to develop and difficult to implement. On the other hand, user acceptance and usage determine the success of implemented information technology in healthcare. This study provides a model to understand health professionals’ perception and expectation of health information technology. Extensive literature review has been conducted to determine the main factors to be measured. A questionnaire has been designed as a measurement model and submitted to the personnel of an in vitro fertilization clinic. The respondents’ degree of agreement according to five-point Likert scale was 72% for convenient access to data and 69.4% for the importance of data security. There was a significant difference in acceptance of electronic data storage for female respondents. Also, other significant differences between professions were obtained.

Keywords: Healthcare, health informatics, medical record system, questionnaire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409