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Abstract—The fuzzy composition of objects depicted in images 

acquired through MR imaging or the use of bio-scanners has often 
been a point of controversy for field experts attempting to effectively 
delineate between the visualized objects. Modern approaches in 
medical image segmentation tend to consider fuzziness as a 
characteristic and inherent feature of the depicted object, instead of 
an undesirable trait. In this paper, a novel technique for efficient 
image retrieval in the context of images in which segmented objects 
are either crisp or fuzzily bounded is presented. Moreover, the 
proposed method is applied in the case of multiple, even conflicting, 
segmentations from field experts. Experimental results demonstrate 
the efficiency of the suggested method in retrieving similar objects 
from the aforementioned categories while taking into account the 
fuzzy nature of the depicted data. 

 
Keywords—Fuzzy Object, Fuzzy Image Segmentation, Motion 

Descriptors, MRI Imaging, Object-Based Image Retrieval. 

I. INTRODUCTION 

EDICAL images obtained through Magnetic Resonance 
(MR) are often difficult to interpret, due to a number of 

factors like background noise, blurring, poor operator 
performance or the lack of homogeneity between the materials 
depicted in the image. Approaches in image segmentation 
attempt to capture and retain the inherent fuzziness of such 
images within the context of segmentation [1], utilizing the 
mathematical framework provided by the theory of fuzzy sets. 
Objects extracted through the use of the aforementioned 
methodologies, referred to as "Fuzzy Objects", provide the 
basis for a new framework of object-based image retrieval that 
is respectful of their graded composition. Different algorithms 
implementing such methods tend to either output the object as 
a graded composition consisting of gray-scale values, or as 
binary (hard) segmentations [1]-[4], as shown in Fig. 1.  

Traditional content-based image retrieval approaches tend 
to either treat the object depicted as a whole image, operating 
on features and properties in order to acquire a descriptor, or 
focus on some of the more or less apparent features of a 
segmented object or region, like shape, color composition, or 
texture [5]. More sophisticated approaches include density 
histograms [6]-[7], color instances [8], correlograms [9], the 
use of feature points or the construction of specific vectors 
that contain information from both color and shape of the 
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object depicted, thus providing similarity measures that are 
based on both boundary and interior [5]. Further flexibility on 
measuring boundary similarity is provided by approaches that 
operate on the contour of the object, like chain code 
representations [10] or complex zernike moments [11] which 
also provide scale and translation invariance. In this paper a 
similar technique that simultaneously draws from both shape 
and the graded composition of the fuzzy object is employed, 
based on the traditional Motion Descriptors presented in [12]. 

 

 

Fig. 1 (a) a CT slice of a human knee: each internal structure is 
considered as an object for segmentation (b) Fuzzy Segmentation 

depicting pixel degrees of membership within each fuzzy object (c) 
one binary (hard) segmentation of the same objects (d) multiple 

binary (hard) manual segmentations of the same object (e) the fuzzy 
object resulting from combining the manual segmentations shown in 

(d) 
 
Motion Descriptors presented in [12] are invariant to 

translations, rotations, scale and reflections of the object under 
consideration. Furthermore, they have often been used 
successfully in object color recognition and color image 
classification. Even more interestingly, H. Fonga [13] 
extended the notion to that of Similarity Descriptors, applying 
them to grey level images. The author further elaborated on 
the notion of stability, suggesting that small distortions in the 
space of objects only result in small distortions in their 
invariant features, therefore providing a credible measure of 
similarity between objects. 

In this paper, a novel object-based image retrieval 
framework addressing the issue of efficient retrieval of images 
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whole feature vector for calculations. 
The query vector ݒ of size |ݒ| ൌ  and the number of ,ܮ

images N in the database are considered again. The distances 
between ݒ and feature vector ܦ௡ are now calculated as: 
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ଶ
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The “Low-Frequency Matching” method significantly 
improves on the number of comparisons computed, providing 
robust results that are considerably similar to that of Section 
III A. 

C.  Two-Step Matching: Low-Frequency Pre-filtering 

The advantages of both matching methods can be combined 
in a way in which we can enjoy the benefits of a reduced 
comparison cost, in conjunction with the increased precision 
and retrieval order of the first method, as shown in Fig. 5. 

According to the combined version, a pre-filtering retrieval 
scheme is used which employs the “Low-Frequency 
Matching” method as a first step to quickly filter out non-
matching feature vectors. The robustness of the method within 
a finite number X e.g. 50-60 of the first retrieved results 
guarantees that an extremely high number of similar 
segmentations will be supplied to the second step of retrieval, 
in which all of the elements of the feature vector are used. 
This results in a time-saving, two-step retrieval scheme which 
can safely substitute the “Difference Matrix” method, at the 
same time retaining an extremely high or exact order of 
retrieval and keeping the number of false alarms and 
dismissals to minimum or even zero, depending on the number 
of elements used in the first step. 

 

 

Fig. 5 Two-Step Matching Scheme 
 

The number of N elements used in first-step should be 
enough to guarantee sufficient successful retrievals within the 
first X retrieved results. It is thus a point of interest that the 
statistics of the first step indirectly influence both the precision 
and the number of false dismissals of the second step. 

IV. EXPERIMENTAL RESULTS 

Experimental results regarding all three proposed methods 
are presented here. The “Segmentation Evaluation Database” 
of Weizmann Institute of Science1 has been used for 

 
1 Weizmann Institute of Science – Segmentation evaluation database: 

http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/ 

evaluation purposes and in order to quantify the accuracy of 
the retrieved results. The database was initially compiled by 
asking human subjects to manually segment gray scale 
images, with each image being segmented by three different 
human subjects.  

A secondary database extracted from data from MRI 
depictions of the Corpus Callosum brain fiber [17] has also 
been used in evaluating the methods. 

A. Datasets 

The first dataset of the “Segmentation Evaluation Database” 
contains a large number of binary segmentations, which, for 
our experimental purposes, had to be extended to also include 
fuzzy segmentations. On top of the already existing 3 binary 
segmentations per class, 4 more where added by all possible 
combinations of the existing ones. Furthermore, we obtain 
another 6 blurry segmentations by applying intense or light 
Gaussian blurring on the first 3 images, and 3 additional ones 
by applying texturing on their light Gaussian blurred version. 
In total, 95 classes of 16 segmentations per class were 
employed to apply the three suggested methods. 

The second dataset, labeled “Corpus Callosum” [17], 
contains 19 segmentations depicting the colossal commissure, 
a wide flatbundle of neural fibers beneath the cortex in the 
eutherian brain at the longitudinal fissure, in patients suffering 
from “Chromosome 22 Deletion Syndrome” [15]. An extra 11 
control (healthy) segmentations are provided. The dataset is 
therefore grouped into two uneven classes, which are then 
expanded in a similar manner as with the first dataset, to 
include blurry versions of the manual segmentations. In total, 
this dataset contains 120 segmentations, out of which 76 
belong to the first class and 44 to the second one. 

Prior to the construction of the Motion Descriptor(s), an 
extra pre-processing step may be required: images in which 
the black background greatly outscales the depicted object 
may need to be resized to match the rest of the database. 
Calculations are best favored by using images with same size 
and a similar background-to-object ratio, in which the object is 
large enough to guarantee sufficient high-frequency content. 
However, since the first few coefficients largely outweigh the 
significance of the last, we expect the method to be robust in 
case of a loss of quality in the high-frequency component of 
an image. 

B. Results 

 Experimental results on both the original and extended 
forms of the dataset demonstrated that Motion Descriptors can 
be used as an effective similarity measure. 

To evaluate the proposed methods, Recall and Precision 
were used. Precision is the fraction of retrieved instances that 
are relevant to the query, whereas recall is the fraction of 
relevant instances that are retrieved. A retrieval is considered a 
“hit” if the retrieved result belongs to the same class as the 
query object selected. Extra-class similarity, although evident 
in some cases, is not taken into consideration when calculating 
the above metrics. 
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TABLE I (A) 
RECALL RESULTS 

 Number of Retrievals 

Order Measure 16 20 25 30 40 50 60 

α = 1 
Recall 98.82% 98.88% 98.88% 99.01% 99.47% 99.80% 100% 

Av. Time 0.0141 s 0.0168 s 0.0146 s 0.0160 s 0.0168 s 0.0164 s 0.0159 s 

α = 2 
Recall 96.91% 97.43% 98.55% 99.14% 99.47% 99.67% 99.74% 

Av. Time 0.0152 s 0.0146 s 0.0155 s 0.0155 s 0.0145 s 0.0145 s 0.0153 s 

α = 3 
Recall 97.17% 98.03% 98.75% 99.08% 99.28% 99.54% 99.61% 

Av. Time 0.0167 s 0.0144 s 0.0143 s 0.0157 s 0.0149 s 0.0144 s 0.0144 s 

α = 4 
Recall 90.86% 92.83% 94.47% 96.32% 98.03% 98.75% 99.21% 

Av. Time 0.0197 s 0.0142 s 0.0143 s 0.0143 s 0.0148 s 0.0161 s 0.0152 s 

Recall results for Motion Descriptors of an increasing Order from Weizmann Institute “Segmentation Evaluation” Database 
 

TABLE I (B) 
RECALL RESULTS 

 Number of Retrievals 

Order Measure 80 90 100 110 120 

α = 1 
Recall 100% 100% 100% 100% 100% 

Av. Time 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 

α = 2 
Recall 100% 100% 100% 100% 100% 

Av. Time 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 

α = 3 
Recall 89,47% 89,47% 89,47% 93,42% 100% 

Av. Time 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 2,859 * 10-11 s 

α = 4 
Recall 94,73% 94,73% 94,73% 94,73% 100% 

Av. Time 2,852 * 10-11 s 2,851 * 10-11 s 2,853 * 10-11 s 2,854 * 10-11 s 2,853 * 10-11 s 

Recall results for Motion Descriptors of an increasing Order from “Corpus Callosum” Database 
 

In Table I, we first present the Recall statistics of the first 
method, that is, the number of “hits” – objects belonging to the 
same class – within the first 16, 20, 25, 30, 40, 50 or 60 results 
for the first database, or within the first 80, 90, 100, 110 or 
120 (all) results for the second database. The results presented 
were calculated for Motion Descriptors altering the values of 
parameter α. 

The results of Table I provide solid ground in further 

improving on the results of the first method. A large number 
of experiments has been conducted using Descriptors of 
different orders, in order to validate the usefulness of the 
conclusions drawn on the second method of Low-Frequency 
Matching. In Tables II and III we provide results for the 
second method, when using only a finite number of the very 
first elements for the calculation of distances between feature 
vectors. 

 
TABLE II (A) 

RECALL RESULTS 

 Number of Retrieved Results 

#Elements used 16 20 25 30 40 50 60 

1 81.38% 85.20% 88.36% 90.99% 93.68% 94.80% 95.59% 

2 93.55% 94.61% 95.92% 97.04% 97.96% 98.42% 98.42% 

6 98.62% 98.68% 98.68% 99.01% 99.34% 99.93% 100% 

7 98.55% 98.68% 98.75% 99.01% 99.28% 99.87% 100% 

10 98.62% 98.88% 98.88% 99.01% 99.47% 99.80% 100% 

15 98.82% 98.88% 98.88% 99.01% 99.47% 99.80% 100% 

Recall results for Motion Descriptors of 1st Order from Weizmann Institute “Segmentation Evaluation” Database, using only a limited number of elements as 
in Low Frequency-Matching method. 

 
TABLE II (B) 

RECALL RESULTS 

 Number of Retrieved Results 

#Elements used 76 80 90 100 110 120 

1 96.05% 96.05% 96.05% 96.05% 96.05% 100.00% 

7 98.68% 98.68% 98.68% 98.68% 98.68% 100.00% 

12 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Recall results for Motion Descriptors of 1st Order from “Corpus Callosum” Database, using only a limited number of elements as in Low Frequency-
Matching method. 
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The above results of Table II concern the use of Motion 
Descriptors of 1st Order. Motion Descriptors of higher order, 
although presenting statistics that are less precise, demonstrate 
similar results in terms of 50-60 retrieved objects for the first 
database. Further experiments using a higher number of 
elements in the first step were also conducted, without 
however providing any improvement in the recall or precision 
metrics achieved by using only 10-15 elements (as shown in 
Table II). The above indicates that by keeping only the first X 
retrievals using only the first few elements we can safely 
proceed towards a second step that uses the full length of the 
descriptor and is specifically geared towards eliminating false 

dismissals. 
Due to the uneven sizes of elements per class, the 

dissimilarity between the two classes and the high level of 
efficiency of the Low-Frequency Matching method as a first 
step, results regarding the “Corpus Callosum” database for the 
case of the Low-Frequency Prefiltering Two-Step Scheme do 
not provide an example of the improvement offered by the 
second step and are therefore not presented in this paper. For 
the “Segmentation Evaluation” Database, the above scheme 
provides results that are either extremely similar or exactly the 
same with the first method, while at the same time reducing 
the number of element-to-element comparisons drastically. 

 
TABLE III 

PRECISION RESULTS 

  Number of elements Λ, Λ < L, used in 1st step 

Order  1 3 4 7 15 20 

α=1 
Recall 94.80% 98.28% 98.81% 98.81% 98.81% 98.81% 

Av. Time 0.1139 * 10-3s 0.1140 * 10-3 s 0.1155 * 10-3 s 0.1146 * 10-3 s 0.1145 * 10-3 s 0.1183 * 10-3 s 

α=2 
Recall 94.73% 96.90% 96.90% 96.90% 96.90% 96.90% 

Av. Time 0.1189 * 10-3 s 0.1236 * 10-3 s 0.1233 * 10-3 s 0.1213 * 10-3 s 0.1385 * 10-3 s 0.1304 * 10-3 s 

α=3 
Recall 94.27% 97.17% 97.17% 97.17% 97.17% 97.17% 

Av. Time 0.1172 * 10-3 s 0.1223 * 10-3 s 0.1224 * 10-3 s 0.1199 * 10-3 s 0.1207 * 10-3 s 0.1217 * 10-3 s 

α=4 
Recall 93.68% 90.85% 90.85% 90.85% 90.85% 90.85% 

Av. Time 0.1212 * 10-3 s 0.1208 * 10-3 s 0.1199 * 10-3 s 0.1214 * 10-3 s 0.1199 * 10-3 s 0.1261 * 10-3 s 

Precision results for Motion Descriptors of different Orders using Low-Frequency Prefiltering Two-Step Scheme method for the Weizmann Institute 
“Segmentation Evaluation” Database. 

 
V. CONCLUSION 

In this paper, a new framework for retrieving 
segmentations, either binary or fuzzy, is proposed. The data 
provided as input or existing in our database can either come 
from manual segmentations from field experts or through the 
use of some well-adjusted automatic segmentation framework, 
such as the Fuzzy Connectedness framework [1]-[4]. Three 
different alternatives are provided: the first demonstrates the 
effectiveness of Motion Descriptors when used to provide 
similarity measurements between different segmentations, 
performing N x ሺ஄

ଶ
െ 1 ሻ comparisons were N is the number of 

images of M x M size in database and ሺ
஄

ଶ
െ 1 ሻ is the size of 

each descriptor. The second elaborates on properties inherent 
to the 2-D spectrum, providing a similarity measure that is fast 
and effective while at the same time keeping the introduction 
of false dismissals or inaccuracies to a minimum. The method 
performs N x Λ comparisons where Λ < ஄

ଶ
െ 1 is the number of 

low-frequency elements kept. The third alternative makes use 
of a two-step pre-filtering scheme, which quickly filters out 
irrelevant segmentations using minimum calculations, leaving 
the second step to operate on a significantly smaller number of 
input vectors. The third method performs: N x Λ in the first 
step and another X x ሺ஄

ଶ
െ 1 ሻ in the second step, where X < N, 

therefore providing a significant improvement in calculation 
speed. Preliminary experimental results demonstrate the 
improved speed and efficiency of a method that operates on 
both boundary and interior of the segmented object. 
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