Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32586
Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms

Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova


The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.

Keywords: Bioregions, ecological monitoring, phytoplankton, remote sensing.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226


[1] D. M. Palacios, “Factors influencing the island-mass effect of the Galápagos Archipelago,” Geophys. Res. Lett., vol. 29, no. 23, pp. 1–4, 2002.
[2] J. Witman and F. Smith, “Rapid community change at a tropical upwelling site in the Galapagos Marine Reserve,” Biodivers. Conserv., vol. 12, pp. 25–45, 2003.
[3] A. R. Longhurst, Ecological Geography of the Sea, 2nd ed. Academic Press, 2006.
[4] C. Naranjo and M. E. Tapia, “Plancton en el canal bolívar de la isla isabela (caleta tagus), islas galápagos durante marzo de 2009,” Acta Ocean. del Pacífico, vol. 20, no. 1, 2015.
[5] J. Morrison, D. Kamykowski, L. Xie, S. Banks, and G. Feldman, “Biodiversity and Upwelling Dynamics of the Galapagos Marine Reserve,” 2008.
[6] B. A. Schaeffer et al., “Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system, and in-situ measurements,” Remote Sens. Environ., vol. 112, pp. 3044–3054, 2008.
[7] J. T. Pennington, K. L. Mahoney, V. S. Kuwahara, D. D. Kolber, R. Calienes, and F. P. Chavez, “Primary production in the eastern tropical Pacific: A review,” Prog. Oceanogr., vol. 69, pp. 285–317, 2006.
[8] Z. Lee, J. Marra, M. J. Perry, and M. Kahru, “Estimating oceanic primary productivity from ocean color remote sensing: A strategic assessment,” J. Mar. Syst., vol. 149, pp. 50–59, 2015.
[9] V. Klemas, “Remote Sensing of Algal Blooms: An Overview with Case Studies,” J. Coast. Res., vol. 28, no. 1, pp. 34–43, 2012.
[10] J. M. Gove et al., “Near-island biological hotspots in barren ocean basins,” Nat. Commun., 2016.
[11] G. J. Edgar, S. Banks, J. M. Fariña, M. Calvopiña, and C. Martinez, “Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago,” J. Biogeogr., vol. 31, no. 7, pp. 1107–1124, 2004.
[12] J. P. Sachs and S. N. Ladd, “Climate and oceanography of the Galapagos in the 21st century: expected changes and research needs,” Galapagos Res., vol. 67, pp. 50–54, 2010.
[13] T. Dickson, “A comparison of concentrations of macronutrients and chlorophyll a in high- and low- chlorophyll concentration areas around the Galápagos Islands Running head : Nutrient concentrations in the Galápagos Tamra Dickson University of Washington School of Ocea,” University of Washington, 2006.
[14] UNESCO, “Sexto Taller Regional de Planificación Científica sobre Floraciones de Algas Nocivasen Sudamérica,” 2004.
[15] D. Laffoley and J. M. Baxter, Explaining Ocean Warming: Causes, scale, effects and consequences, no. September. IUNC, 2016.
[16] R. Jimenez, “Jiménez 1983 (cocolitofóridos en Ecuador).pdf,” Acta Ocean. del Pacífico, vol. 2, no. 2, 1983.
[17] M. L. García, G. Larrea, C. Aguirre, and A. Vásquez, “Zooplankto Biomass, Zooplankton and Ichthyoplankton Abundances around Galapagos Islands in 1983-1984,” Rev. Ciencias del Mar y Limnol., vol. 3, no. 1, pp. 17–18, 1993.
[18] G. Torres and M. E. Tapia, “Distribución del primer nivel trófico (fitoplancton) en el Pacífico ecuatoriano, período 1996-1997 (pre-El Niño),” Acta Ocean. del Pacífico, vol. 9, no. 1, 1998.
[19] G. Torres and M. Tapia, “Distribución del fitoplancton y su comportamiento en el afloramiento en las islas Galápagos,” Acta Oceanográfica del Pacífico, vol. 10, no. 1. pp. 137–150, 2000.
[20] M. E. Tapia and G. Torres, “Variabilidad Fitoplanctonica en 5 Bahias, Islas Galapagos (Ecuador),” Acta Ocean. del Pacífico, vol. 10, no. 1, 2000.
[21] G. Torres and M. E. Tapia, “Fitoplancton en el Afloramiento de las Islas Galápagos, durante agosto 2000,” Acta Ocean. del Pacífico, vol. 11, no. 1, 2002.
[22] K. Matsuoka, “Research Articles Modern Dinoflagellate Cysts Found in Surface,” Galapagos Res., vol. 63, no. June, pp. 8–11, 2005.
[23] A. R. Fernández, “Coastal nutrient and water budget assessments for Puerto Ayora, Academy Bay, Santa Cruz Island,” The Significant Opportunities in Atmospheric Research and Science (SOARS) Program. 2008.
[24] W. V. Sweet, J. M. Morrison, D. Kamykowski, B. A. Schaeffer, S. Banks, and A. McCulloch, “Water mass seasonal variability in the Galapagos Archipelago,” Deep. Res. Part I Oceanogr. Res. Pap., vol. 54, pp. 2023–2035, 2007.
[25] J. M. Gove et al., “Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems,” PLoS One, vol. 8, no. 4, 2013.
[26] M. Wolff, “Galápagos does not show recent warming but increased seasonality,” Galápagos Res., vol. 67, pp. 38–44, 2010.
[27] R. Kudela, G. Pitcher, T. Probyn, F. Figueiras, T. Moita, and V. Trainer, “Harmful Algal Blooms in Coastal Upwelling Systems,” Oceanography, vol. 18, no. 2, pp. 184–197, 2005.
[28] G. Torres, “Eventos de Mareas Rojas: Estrategias de Gestión para el Manejo Integrado y Preventivo en Ecuador,” Tesis para la obtención de Magister en Ciencias en Manejo Sustentable de Recursos Bioacuáticos y Medio Ambiente, Facultad de Ciencias Naturales de la Universidad de Guayaquil, 2012.
[29] G. Torres, “Evaluación de mareas rojas durante 1968-2009 en Ecuador,” Acta Ocean. del Pacífico, vol. 20, no. 1, 2015.
[30] INOCAR, “Diagnóstico Ambiental de la Capitanía de Puerto Ayora Isla Santa Cruz,” 2007. Unpublished.
[31] C. Karaolis, “Effects of Global Warming on Harmful Algagl Blooms Occurence in the United States of America,” Cyprus International Institute, 2004.
[32] M. E. Tapia and C. Naranjo, “Aspectos cceanográficos del plancton y su relación con el Frente Ecuatorial, durante septiembre de 2011,” Acta Ocean. del Pacífico, vol. 17, no. 1, 2012.
[33] J. Denkinger et al., “Pup Mortality and Evidence for Pathogren Exposure in Galapgos Sea Lions (Zalophus Wollebaeki) on San Cristobal Island, Galapagos, Ecuador,” J. Wildl. Dis., vol. 53, no. 3, pp. 491–498, 2017.
[34] D. Blondeau-Patissier, J. F. R. Gower, A. G. Dekker, S. R. Phinn, and V. E. Brando, “A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans,” Prog. Oceanogr., vol. 123, pp. 123–144, 2014.
[35] P. A. Diaz et al., “Climate variability and oceanographic settings associated with interannual variability in the initiation of dinophysis acuminata blooms,” Mar. Drugs, vol. 11, no. 8, pp. 2964–2981, 2013.
[36] C. S. Rousseaux and W. W. Gregg, “Interannual variation in phytoplankton primary production at a global scale,” Remote Sens., vol. 6, no. 1, pp. 1–19, 2014.
[37] W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. a. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: Separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res., vol. 104, no. C1, p. 1541, 1999.
[38] W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea - Continuous underway measurements of particulate inorganic and organic carbon,” Deep. Res. Part I Oceanogr. Res. Pap., vol. 48, no. 11, pp. 2423–2452, 2001.
[39] D. Stramski et al., “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences, vol. 5, no. 1, pp. 171–201, 2008.
[40] D. Liu et al., “Remote sensing observation of particulate organic carbon in the Pearl River Estuary,” Remote Sens., vol. 7, pp. 8683–8704, 2015.
[41] J. Kämpf and P. Chapman, Upwelling systems of the world: A scientific journey to the most productive marine ecosystems. 2016.
[42] M. Kahru et al., “Global correlations between winds and ocean chlorophyll,” J. Geophys. Res. Ocean., vol. 115, no. 12, pp. 1–11, 2010.
[43] A. Kassambara and F. Mundt, “Package ‘factoextra,’” R topics documented. p. 75, 2017.
[44] I. T. Jolliffe, “Principal Component Analysis, Second Edition,” Encycl. Stat. Behav. Sci., vol. 30, no. 3, p. 487, 2002.
[45] K. Pearson, “On lines and planes of closest fit to systems of points in space,” Philos. Mag. J. Sci., vol. 2, no. 1, pp. 559–572, 1901.
[46] A. M. Grimm and R. G. Tedeschi, “ENSO and extreme rainfall events in South America,” J. Clim., vol. 22, pp. 1589–1609, 2009.
[47] M. Wolff, D. J. Ruiz, and M. Taylor, “El Niño induced changes to the Bolivar Channel ecosystem (Galapagos): comparing model simulations with historical biomass time series,” Mar. Ecol. Prog. Ser., vol. 448, pp. 7–22, 2012.
[48] J. P. Ryan, I. Ueki, Y. Chao, H. Zhang, P. S. Polito, and F. P. Chavez, “Western Pacific modulation of large phytoplankton blooms in the central and eastern equatorial Pacific,” J. Geophys. Res. Biogeosciences, vol. 111, pp. 1–14, 2006.
[49] P. W. Glynn, “Global Ecological Consequences of the 1982-83 El Niño-Southern Oscillation,” Mar. Biol. Fish., vol. 52, no. 1, 1990.
[50] D. M. Palacios, “Seasonal patterns of sea-surface temperature and ocean color around the Galapagos: regional and local influences,” Deep. Res. II, vol. 51, pp. 43–57, 2004.
[51] G. Torres, “Areas de mayor productividad biologica (clorofila a) en el pacifico ecuatorial (82’W-92’W) durante 1988-1999 y su relacion con eventos del niño,” Acta Ocean. del Pacífico, vol. 13, no. 1, 2006.