Search results for: business data type
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9756

Search results for: business data type

8076 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
8075 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: Decision making, human capital analytics, talent management, talent value chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
8074 Enhancing K-Means Algorithm with Initial Cluster Centers Derived from Data Partitioning along the Data Axis with the Highest Variance

Authors: S. Deelers, S. Auwatanamongkol

Abstract:

In this paper, we propose an algorithm to compute initial cluster centers for K-means clustering. Data in a cell is partitioned using a cutting plane that divides cell in two smaller cells. The plane is perpendicular to the data axis with the highest variance and is designed to reduce the sum squared errors of the two cells as much as possible, while at the same time keep the two cells far apart as possible. Cells are partitioned one at a time until the number of cells equals to the predefined number of clusters, K. The centers of the K cells become the initial cluster centers for K-means. The experimental results suggest that the proposed algorithm is effective, converge to better clustering results than those of the random initialization method. The research also indicated the proposed algorithm would greatly improve the likelihood of every cluster containing some data in it.

Keywords: Clustering algorithm, K-means algorithm, Datapartitioning, Initial cluster centers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
8073 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: Outlier detection, generative adversary networks, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
8072 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: Dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation; pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
8071 Methodology of the Turkey’s National Geographic Information System Integration Project

Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa

Abstract:

With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.

Keywords: Data specification, geoportal, GIS, INSPIRE, TUCBS, Turkey’s National Geographic Information System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
8070 Assessment of Occupational Exposure and Individual Radio-Sensitivity in People Subjected to Ionizing Radiation

Authors: Oksana G. Cherednichenko, Anastasia L. Pilyugina, Sergey N.Lukashenko, Elena G. Gubitskaya

Abstract:

The estimation of accumulated radiation doses in people professionally exposed to ionizing radiation was performed using methods of biological (chromosomal aberrations frequency in lymphocytes) and physical (radionuclides analysis in urine, whole-body radiation meter, individual thermoluminescent dosimeters) dosimetry. A group of 84 "A" category employees after their work in the territory of former Semipalatinsk test site (Kazakhstan) was investigated. The dose rate in some funnels exceeds 40 μSv/h. After radionuclides determination in urine using radiochemical and WBC methods, it was shown that the total effective dose of personnel internal exposure did not exceed 0.2 mSv/year, while an acceptable dose limit for staff is 20 mSv/year. The range of external radiation doses measured with individual thermo-luminescent dosimeters was 0.3-1.406 µSv. The cytogenetic examination showed that chromosomal aberrations frequency in staff was 4.27±0.22%, which is significantly higher than at the people from non-polluting settlement Tausugur (0.87±0.1%) (р ≤ 0.01) and citizens of Almaty (1.6±0.12%) (р≤ 0.01). Chromosomal type aberrations accounted for 2.32±0.16%, 0.27±0.06% of which were dicentrics and centric rings. The cytogenetic analysis of different types group radiosensitivity among «professionals» (age, sex, ethnic group, epidemiological data) revealed no significant differences between the compared values. Using various techniques by frequency of dicentrics and centric rings, the average cumulative radiation dose for group was calculated, and that was 0.084-0.143 Gy. To perform comparative individual dosimetry using physical and biological methods of dose assessment, calibration curves (including own ones) and regression equations based on general frequency of chromosomal aberrations obtained after irradiation of blood samples by gamma-radiation with the dose rate of 0,1 Gy/min were used. Herewith, on the assumption of individual variation of chromosomal aberrations frequency (1–10%), the accumulated dose of radiation varied 0-0.3 Gy. The main problem in the interpretation of individual dosimetry results is reduced to different reaction of the objects to irradiation - radiosensitivity, which dictates the need of quantitative definition of this individual reaction and its consideration in the calculation of the received radiation dose. The entire examined contingent was assigned to a group based on the received dose and detected cytogenetic aberrations. Radiosensitive individuals, at the lowest received dose in a year, showed the highest frequency of chromosomal aberrations (5.72%). In opposite, radioresistant individuals showed the lowest frequency of chromosomal aberrations (2.8%). The cohort correlation according to the criterion of radio-sensitivity in our research was distributed as follows: radio-sensitive (26.2%) — medium radio-sensitivity (57.1%), radioresistant (16.7%). Herewith, the dispersion for radioresistant individuals is 2.3; for the group with medium radio-sensitivity — 3.3; and for radio-sensitive group — 9. These data indicate the highest variation of characteristic (reactions to radiation effect) in the group of radio-sensitive individuals. People with medium radio-sensitivity show significant long-term correlation (0.66; n=48, β ≥ 0.999) between the values of doses defined according to the results of cytogenetic analysis and dose of external radiation obtained with the help of thermoluminescent dosimeters. Mathematical models based on the type of violation of the radiation dose according to the professionals radiosensitivity level were offered.

Keywords: Biodosimetry, chromosomal aberrations, ionizing radiation, radiosensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
8069 Side Effects of Dental Tooth Whitening: Data from Literature

Authors: Saimir Heta, Ilma Robo, Emela Dalloshi, Nevila Alliu, Vera Ostreni

Abstract:

The dental whitening process, beyond the fact that it is a mini-invasive dental treatment, has effects on the dental structure or on the pulp of the tooth where it is applied. The electronic search was performed using keywords to find articles published within the last 10 years about side effects, assessed as such, of the minimally invasive dental bleaching treatment. The aim of the study was to evaluate the side effects of bleaching based on the percentage and type of solution used, where the latter was evaluated on the basic solution used for bleaching. The side effects of bleaching are evaluated in selected articles depending on the method of bleaching application, which means it is carried out with recommended solutions, or with mixtures of alternative solutions or substances based on Internet information. The dental bleaching process has side effects which have not yet been definitively evaluated, experimentally in large samples of individuals or animals (mice or cattle) to arrive at accurate numerical conclusions. The trend of publications about this topic is increasing in recent years, as long as the trend for aesthetic facial treatments, including dental ones, is increasing.

Keywords: Teeth whitening, side effects, permanent teeth, formed dental apex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23
8068 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: G. Candel, D. Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embedding. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic, and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n2) to O(n2/k), and the memory requirement from n2 to 2(n/k)2 which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: Concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
8067 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns

Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim

Abstract:

In the Solid-State-Drive (SSD) performance, whether the data has been well parallelized is an important factor. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.

Keywords: Dynamic allocation, NAND Flash based SSD, SSD parallelism, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
8066 Exploiting Machine Learning Techniques for the Enhancement of Acceptance Sampling

Authors: Aikaterini Fountoulaki, Nikos Karacapilidis, Manolis Manatakis

Abstract:

This paper proposes an innovative methodology for Acceptance Sampling by Variables, which is a particular category of Statistical Quality Control dealing with the assurance of products quality. Our contribution lies in the exploitation of machine learning techniques to address the complexity and remedy the drawbacks of existing approaches. More specifically, the proposed methodology exploits Artificial Neural Networks (ANNs) to aid decision making about the acceptance or rejection of an inspected sample. For any type of inspection, ANNs are trained by data from corresponding tables of a standard-s sampling plan schemes. Once trained, ANNs can give closed-form solutions for any acceptance quality level and sample size, thus leading to an automation of the reading of the sampling plan tables, without any need of compromise with the values of the specific standard chosen each time. The proposed methodology provides enough flexibility to quality control engineers during the inspection of their samples, allowing the consideration of specific needs, while it also reduces the time and the cost required for these inspections. Its applicability and advantages are demonstrated through two numerical examples.

Keywords: Acceptance Sampling, Neural Networks, Statistical Quality Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
8065 AIS Design based on Service - Oriented Architecture SOA

Authors: Yan-Fang Niu

Abstract:

In view of current IT integration development of SOA, this paper examines AIS design based on SOA, including information sources collection, accounting business process integration and real-time financial reports. The main objective of this exploratory paper is to facilitate AIS research combing the Web Service, which is often ignored in accounting and computer research. It provides a conceptual framework that clarifies the interdependency between SOA and AIS, and also presents the major SOA functions in different areas of AIS

Keywords: AIS, SOA, Web Service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
8064 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
8063 A Study on Flammability of Bio Oil Combustible Vapour Mixtures

Authors: Mohanad El-Harbawi, Nurul Amirah Hanim Bt. Umar, Norizan Ali, Yoshimitsu Uemura

Abstract:

Study of fire and explosion is very important mainly in oil and gas industries due to several accidents which have been reported in the past and present. In this work, we have investigated the flammability of bio oil vapour mixtures. This mixture may contribute to fire during the storage and transportation process. Bio oil sample derived from Palm Kernell shell was analysed using Gas Chromatography Mass Spectrometry (GC-MS) to examine the composition of the sample. Mole fractions of 12 selected components in the liquid phase were obtained from the GC-FID data and used to calculate mole fractions of components in the gas phase via modified Raoult-s law. Lower Flammability Limits (LFLs) and Upper Flammability Limits (UFLs) for individual components were obtained from published literature. However, stoichiometric concentration method was used to calculate the flammability limits of some components which their flammability limit values are not available in the literature. The LFL and UFL values for the mixture were calculated using the Le Chatelier equation. The LFLmix and UFLmix values were used to construct a flammability diagram and subsequently used to determine the flammability of the mixture. The findings of this study can be used to propose suitable inherently safer method to prevent the flammable mixture from occurring and to minimizing the loss of properties, business, and life due to fire accidents in bio oil productions.

Keywords: Gas chromatography, compositions, lower and upper flammability limits (LFL & UFL), flammability diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431
8062 Unmet English Needs of the Non-Engineering Staff: The Case of Algerian Hydrocarbon Industry

Authors: N. Khiati

Abstract:

The present paper attempts to report on some findings that emerged out of a larger scale doctorate research into English language needs of a renowned Algerian company of Hydrocarbon industry. From a multifaceted English for specific purposes (ESP) research perspective, the paper considers the English needs of the finance/legal department staff in the midst of the conflicting needs perspectives involving both objective needs indicators (i.e., the pressure of globalised business) and the general negative attitudes among the administrative -mainly jurists- staff towards English (favouring a non-adaptation strategy). The researcher’s unearthing of the latter’s needs is an endeavour to concretise the concepts of unmet, or unconscious needs, among others. This is why, these initially uncovered hidden needs will be detailed questioning educational background, namely previous language of instruction; training experiences and expectations; as well as the actual communicative practices derived from the retrospective interviews and preliminary quantitative data of the questionnaire. Based on these rough clues suggesting real needs, the researcher will tentatively propose some implications for both pre-service and in-service training organisers as well as for educational policy makers in favour of an English course in legal English for the jurists mainly from pre-graduate phases to in-service training.

Keywords: English for specific purposes, ESP, legal and finance staff, needs analysis, unmet/unconscious needs, training implications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
8061 Adaptive Kernel Principal Analysis for Online Feature Extraction

Authors: Mingtao Ding, Zheng Tian, Haixia Xu

Abstract:

The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.

Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
8060 Proposing an Efficient Method for Frequent Pattern Mining

Authors: Vaibhav Kant Singh, Vijay Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay KumarSingh, Chhaya Dule, Vivek Parganiha

Abstract:

Data mining, which is the exploration of knowledge from the large set of data, generated as a result of the various data processing activities. Frequent Pattern Mining is a very important task in data mining. The previous approaches applied to generate frequent set generally adopt candidate generation and pruning techniques for the satisfaction of the desired objective. This paper shows how the different approaches achieve the objective of frequent mining along with the complexities required to perform the job. This paper will also look for hardware approach of cache coherence to improve efficiency of the above process. The process of data mining is helpful in generation of support systems that can help in Management, Bioinformatics, Biotechnology, Medical Science, Statistics, Mathematics, Banking, Networking and other Computer related applications. This paper proposes the use of both upward and downward closure property for the extraction of frequent item sets which reduces the total number of scans required for the generation of Candidate Sets.

Keywords: Data Mining, Candidate Sets, Frequent Item set, Pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
8059 Entropic Measures of a Probability Sample Space and Exponential Type (α, β) Entropy

Authors: Rajkumar Verma, Bhu Dev Sharma

Abstract:

Entropy is a key measure in studies related to information theory and its many applications. Campbell for the first time recognized that the exponential of the Shannon’s entropy is just the size of the sample space, when distribution is uniform. Here is the idea to study exponentials of Shannon’s and those other entropy generalizations that involve logarithmic function for a probability distribution in general. In this paper, we introduce a measure of sample space, called ‘entropic measure of a sample space’, with respect to the underlying distribution. It is shown in both discrete and continuous cases that this new measure depends on the parameters of the distribution on the sample space - same sample space having different ‘entropic measures’ depending on the distributions defined on it. It was noted that Campbell’s idea applied for R`enyi’s parametric entropy of a given order also. Knowing that parameters play a role in providing suitable choices and extended applications, paper studies parametric entropic measures of sample spaces also. Exponential entropies related to Shannon’s and those generalizations that have logarithmic functions, i.e. are additive have been studies for wider understanding and applications. We propose and study exponential entropies corresponding to non additive entropies of type (α, β), which include Havard and Charvˆat entropy as a special case.

Keywords: Sample space, Probability distributions, Shannon’s entropy, R`enyi’s entropy, Non-additive entropies .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3391
8058 Danger Theory and Intelligent Data Processing

Authors: Anjum Iqbal, Mohd Aizaini Maarof

Abstract:

Artificial Immune System (AIS) is relatively naive paradigm for intelligent computations. The inspiration for AIS is derived from natural Immune System (IS). Classically it is believed that IS strives to discriminate between self and non-self. Most of the existing AIS research is based on this approach. Danger Theory (DT) argues this approach and proposes that IS fights against danger producing elements and tolerates others. We, the computational researchers, are not concerned with the arguments among immunologists but try to extract from it novel abstractions for intelligent computation. This paper aims to follow DT inspiration for intelligent data processing. The approach may introduce new avenue in intelligent processing. The data used is system calls data that is potentially significant in intrusion detection applications.

Keywords: artificial immune system, danger theory, intelligent processing, system calls

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
8057 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well

Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo

Abstract:

A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.

Keywords: Neural networks, groundwater depth, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
8056 Acoustic Detection of the Red Date Palm Weevil

Authors: Mohammed A. Al-Manie, Mohammed I. Alkanhal

Abstract:

In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.

Keywords: Acoustic emissions, acoustic sensors, nondestructivetests, Red Date Palm Weevil, signal processing..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
8055 Knowledge Spillovers from Patent Citations: Evidence from Swiss Manufacturing Industry

Authors: Racha Khairallah, Lamia Ben Hamida

Abstract:

Our paper attempts to examine how Swiss manufacturing firms manage to learn from patent citations to improve their innovation performance. We argue that the assessment of these effects needs a detailed analysis of spillovers according to the source of knowledge with respect to formal and informal patent citations made in European and internal search, the horizontal and vertical mechanisms by which knowledge spillovers take place, and the technological characteristics of innovative firms that able them to absorb external knowledge and integrate it in their existing innovation process. We use Organisation for Economic Co-operation and Development (OECD) data and find evidence that knowledge spillovers occur only from horizontal and backward linkages. The importance of these effects depends on the type of citation, in which the references to non-patent literature (informal citations made in European and international searches) have a greater impact. In addition, only firms with high technological capacities benefit from knowledge spillovers from formal and informal citations. Low-technology firms fail to catch up and efficiently learn external knowledge from patent citations.

Keywords: Innovation performance, patent citation, absorptive capacity, knowledge spillover mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49
8054 Organizational Data Security in Perspective of Ownership of Mobile Devices Used by Employees for Works

Authors: B. Ferdousi, J. Bari

Abstract:

With advancement of mobile computing, employees are increasingly doing their job-related works using personally owned mobile devices or organization owned devices. The Bring Your Own Device (BYOD) model allows employees to use their own mobile devices for job-related works, while Corporate Owned, Personally Enabled (COPE) model allows both organizations and employees to install applications onto organization-owned mobile devices used for job-related works. While there are many benefits of using mobile computing for job-related works, there are also serious concerns of different levels of threats to the organizational data security. Consequently, it is crucial to know the level of threat to the organizational data security in the BOYD and COPE models. It is also important to ensure that employees comply with the organizational data security policy. This paper discusses the organizational data security issues in perspective of ownership of mobile devices used by employees, especially in BYOD and COPE models. It appears that while the BYOD model has many benefits, there are relatively more data security risks in this model than in the COPE model. The findings also showed that in both BYOD and COPE environments, a more practical approach towards achieving secure mobile computing in organizational setting is through the development of comprehensive cybersecurity policies balancing employees’ need for convenience with organizational data security. The study helps to figure out the compliance and the risks of security breach in BYOD and COPE models.

Keywords: Data security, mobile computing, BYOD, COPE, cybersecurity policy, cybersecurity compliance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373
8053 New Security Approach of Confidential Resources in Hybrid Clouds

Authors: Haythem Yahyaoui, Samir Moalla, Mounir Bouden, Skander Ghorbel

Abstract:

Nowadays, cloud environments are becoming a need for companies, this new technology gives the opportunities to access to the data anywhere and anytime. It also provides an optimized and secured access to the resources and gives more security for the data which is stored in the platform. However, some companies do not trust Cloud providers, they think that providers can access and modify some confidential data such as bank accounts. Many works have been done in this context, they conclude that encryption methods realized by providers ensure the confidentiality, but, they forgot that Cloud providers can decrypt the confidential resources. The best solution here is to apply some operations on the data before sending them to the provider Cloud in the objective to make them unreadable. The principal idea is to allow user how it can protect his data with his own methods. In this paper, we are going to demonstrate our approach and prove that is more efficient in term of execution time than some existing methods. This work aims at enhancing the quality of service of providers and ensuring the trust of the customers. 

Keywords: Confidentiality, cryptography, security issues, trust issues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
8052 A Novel Web Metric for the Evaluation of Internet Trends

Authors: Radek Malinský, Ivan Jelínek

Abstract:

Web 2.0 (social networking, blogging and online forums) can serve as a data source for social science research because it contains vast amount of information from many different users. The volume of that information has been growing at a very high rate and becoming a network of heterogeneous data; this makes things difficult to find and is therefore not almost useful. We have proposed a novel theoretical model for gathering and processing data from Web 2.0, which would reflect semantic content of web pages in better way. This article deals with the analysis part of the model and its usage for content analysis of blogs. The introductory part of the article describes methodology for the gathering and processing data from blogs. The next part of the article is focused on the evaluation and content analysis of blogs, which write about specific trend.

Keywords: Blog, Sentiment Analysis, Web 2.0, Webometrics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3544
8051 Entrepreneurship Education as a Pre-Requisite for Graduate Entrepreneurship: A Study of Graduate Entrepreneurs in Yenagoa City

Authors: Kurotimi M. Fems, Francis D. W. Poazi, Helen Opigo

Abstract:

The concepts of entrepreneurship education together with graduate entrepreneurship have taken centre stage in many countries as a 21st century strategy for economic growth and development. Entrepreneurship education has been viewed as a pre-requisite tool for a more effective and successful business operation. This paper seeks to verify if entrepreneurship education is pre-requisite to graduate entrepreneurship, and to ascertain if such other factors as the need for achievement, competence and experience etc. also play a foundational role in the choice of a graduate becoming an entrepreneur. The scope of the research study is entrepreneurs within Yenagoa metropolis in Bayelsa state, Nigeria. The sample target is graduates engaged in entrepreneurship activities (graduates who own and run businesses). Stratified sampling technique was used and 101 responses were obtained from a total of 300 questionnaires issued. Bar chart, tables and percentages were used to analyze the collected data. The findings revealed that personality traits, situational circumstance, need for achievement and experience/competence were the foundational factors stimulating graduate entrepreneurs to engage in entrepreneurial pursuits. Of all, personality trait showed the highest score with 73 (73%) out of 101 entrepreneurs agreeing. Experience/Competence and situational circumstances followed behind with 66 (65%) and 63 (62.4%), respectively. Entrepreneurship education revealed the least score with 33 (32.3%) out of 101 participating entrepreneurs. All hope, however, is not lost, as this shows that something can be done to increase the impact of entrepreneurship education on graduate entrepreneurship.

Keywords: Creative destruction, entrepreneurs, entrepreneurship education, graduate entrepreneurship, pre-requisite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
8050 The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs

Authors: E. Abustam, M. I. Said, M. Yusuf, H. M. Ali

Abstract:

This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2- 5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (w/w), and storage duration (0 and 7 days) with three replications, respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage.

Keywords: Balinese beef meatballs, buffalo meatballs, sensory quality, smoke powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
8049 Comparative Studies on Interactions of Synthetic and Natural Compounds with Hen Egg-White Lysozyme

Authors: Seifollah Bahramikia

Abstract:

Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. In recent years, blocking or reversing amyloid aggregation via the use of small compounds are considered as two useful approaches in hampering the development of these diseases. In this research, we have compared the ability of several manganese-salen derivatives, as synthetic compounds, and apigenin, as a natural flavonoid, to inhibit of hen egg-white lysozyme (HEWL) aggregation, as an in vitro model system. Different spectroscopic analyses such as Thioflavin T (ThT) and Anilinonaphthalene-8-sulfonic acid (ANS) fluorescence, Congo red (CR) absorbance along with transmission electron microscopy were used in this work to monitor the HEWL aggregation kinetic and inhibition. Our results demonstrated that both type of compounds were capable to prevent the formation of lysozyme amyloid aggregation in vitro. In addition, our data indicated that synthetic compounds had higher activity to inhibit of the β-sheet structures relative to natural compound. Regarding the higher antioxidant activities of the salen derivatives, it can be concluded that in addition to aromatic rings of each of the compounds, the potent antioxidant properties of salen derivatives contributes to lower lysozyme fibril accumulation.

Keywords: Aggregation, anti-amyloidogenic, apigenin, hen egg white lysozyme, salen derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
8048 Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm

Authors: Ladan Darougaran, Hossein Shahinzadeh, Hajar Ghotb, Leila Ramezanpour

Abstract:

In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.

Keywords: Data aggregation, wireless sensor networks, energy efficiency, simulated annealing algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
8047 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

Sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: Sampled-data control, Sector bound, Solid oxide fuel cell, Time-delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723