Search results for: Optimized output.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1734

Search results for: Optimized output.

144 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem

Authors: Sayyed R Mousavi

Abstract:

The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.

Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
143 Orthogonal Array Application and Response Surface Method Approach for Optimal Product Values: An Application for Oil Blending Process

Authors: Christopher C. Ihueze, Constance C. Obiuto, Christian E. Okafor, Charles C. Okpala

Abstract:

This paper presents a methodical approach for designing and optimizing process parameters in oil blending industries. Twenty seven replicated experiments were conducted for production of A-Z crown super oil (SAE20W/50) employing L9 orthogonal array to establish process response parameters. Power law model was fitted to experimental data and the obtained model was optimized applying the central composite design (CCD) of response surface methodology (RSM). Quadratic model was found to be significant for production of A-Z crown supper oil. The study recognized and specified four new lubricant formulations that conform to ISO oil standard in the course of analyzing the batch productions of A-Z crown supper oil as: L1: KV = 21.8293Cst, BS200 = 9430.00Litres, Ad102=11024.00Litres, PVI = 2520 Litres, L2: KV = 22.513Cst, BS200 = 12430.00 Litres, Ad102 = 11024.00 Litres, PVI = 2520 Litres, L3: KV = 22.1671Cst, BS200 = 9430.00 Litres, Ad102 = 10481.00 Litres, PVI= 2520 Litres, L4: KV = 22.8605Cst, BS200 = 12430.00 Litres, Ad102 = 10481.00 Litres, PVI = 2520 Litres. The analysis of variance showed that quadratic model is significant for kinematic viscosity production while the R-sq value statistic of 0.99936 showed that the variation of kinematic viscosity is due to its relationship with the control factors. This study therefore resulted to appropriate blending proportions of lubricants base oil and additives and recommends the optimal kinematic viscosity of A-Z crown super oil (SAE20W/50) to be 22.86Cst.

Keywords: Additives, control factors, kinematic viscosity, lubricant, orthogonal array, process parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
142 Image Restoration in Non-Linear Filtering Domain using MDB approach

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil

Abstract:

This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.

Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
141 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: Stormwater runoff, stormwater storage tank, real-time control, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
140 Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure

Authors: Abdul Hafiizh, Shigeki Obote, Kenichi Kagoshima

Abstract:

This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics–such as multiple subcarriers, multiple antennas, and channel estimation characteristics–for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (RSSI) methods. Hybrid of DOA-RSSI methods also evaluated. In the experimental data result, we show that location estimation accuracy performances can be increased by minimizing the multipath fading effect. This is done using multiple subcarrier frequencies over wideband frequencies to estimate one location. The proposed methods are analyzed in both a wide indoor environment and a typical room-sized office. In the experiments, WLAN terminal locations are estimated by measuring multiple subcarriers from arrays of three dipole antennas of access points (AP). This research demonstrates highly accurate, robust and hardware-free add-on software for indoor location estimations based on a MIMO-OFDM WLAN system.

Keywords: Direction of Arrival (DOA), Indoor location estimation method, Multipath Fading, MIMO-OFDM, Received Signal Strength Indication (RSSI), WLAN, Hybrid DOA-RSSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
139 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

Authors: G. H. Senussi

Abstract:

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3284
138 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
137 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province

Authors: Leila Rashidian, Abbas Ebrahimi

Abstract:

The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.

Keywords: Climate change, Lars.WG, HADCM3 model, Fars province, climatic parameters, A2 scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
136 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.

Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
135 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class

Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha

Abstract:

This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.

Keywords: Fuzzy logic, body mass index, body fat percentage, weightlifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
134 Application of Cite Space Software in Visual Analysis of Land Use Coupling Research Progress

Authors: Jing Zhou, Weiqun Su, Naying Luo, Min Shang, Li Wu

Abstract:

The coupling of land use system in geographical research is mainly the coupling of pattern and process, which is essentially the human-land coupling, and is an important part of the research and discussion of human-land relationship. Based on the Web of Science database, the paper titles, authors, keywords, and references from 1997-2020 related to land use coupling were used as data sources to explore the research progress of land use coupling. Cite Space bibliometric tool was used for co-occurrence analysis of the issuing country, issuing institution, co-cited author, disciplinary institution, and keywords. The results are shown as follows: (1) From 1997 to 2020, the United States, China, and Germany rank the top, with more than 250 published papers. Although China ranks second in the number of published papers on foreign literature, it has less centrality and less influence. (2) The top 10 institutions (universities) in the number of published papers (more than 300 articles) are mainly from the United States and China, and the University of Chinese Academy of Sciences has the highest output of papers. At the same time, the phenomenon of multi-institutional cooperation has increased in the field of land use coupling research. (3) From 1997 to 2020, land sensitivity research and the impact of climate change on land use patterns are the main directions of land use coupling research. However, in the past five years, scholars have mainly focused on the coupling research methods of land use and the coupling relationship between ecological and environmental factors and land use.

Keywords: Land use coupling, cite space, knowledge graph, visual analysis, research progress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
133 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan

Abstract:

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Keywords: Break Even Point, Fuzzy Crisp Data, Fuzzy Sets, Productivity, Productivity Cycle, Total Productive Maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
132 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes

Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari

Abstract:

In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.

Keywords: System identification, dynamic characteristics, soil-structure system, bending steel frame structure, displacement-based design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
131 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network

Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo

Abstract:

By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.

Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
130 Single Phase 13-Level D-STATCOM Inverter with Distributed System

Authors: R. Kamalakannan, N. Ravi Kumar

Abstract:

The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.

Keywords: FACTS devices, distributed-Static synchronous compensators, DSTATCOM, total harmonics elimination, modular multilevel converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
129 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
128 Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa

Abstract:

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage SourceConverter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse WidthModulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
127 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System

Authors: Jason Chien-Hsun Tseng

Abstract:

This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.

Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
126 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135
125 Systematic Examination of Methods Supporting the Social Innovation Process

Authors: Mariann Veresne Somosi, Zoltan Nagy, Krisztina Varga

Abstract:

Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.

Keywords: Factors of social innovation, methodological combination, social innovation process, supporting decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
124 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application

Authors: Hailu Dessalegn, T. Srinivas

Abstract:

We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974nm with a flat top pass band at 1dB of 0.5205nm and free spectral range of about 14.9nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54pm/

Keywords: Optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
123 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract:

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Keywords: Cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
122 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
121 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
120 Development of Rock Engineering System-Based Models for Tunneling Progress Analysis and Evaluation: Case Study of Tailrace Tunnel of Azad Power Plant Project

Authors: S. Golmohammadi, M. Noorian Bidgoli

Abstract:

Tunneling progress is a key parameter in the blasting method of tunneling. Taking measures to enhance tunneling advance can limit the progress distance without a supporting system, subsequently reducing or eliminating the risk of damage. This paper focuses on modeling tunneling progress using three main groups of parameters (tunneling geometry, blasting pattern, and rock mass specifications) based on the Rock Engineering Systems (RES) methodology. In the proposed models, four main effective parameters on tunneling progress are considered as inputs (RMR, Q-system, Specific charge of blasting, Area), with progress as the output. Data from 86 blasts conducted at the tailrace tunnel in the Azad Dam, western Iran, were used to evaluate the progress value for each blast. The results indicated that, for the 86 blasts, the progress of the estimated model aligns mostly with the measured progress. This paper presents a method for building the interaction matrix (statistical base) of the RES model. Additionally, a comparison was made between the results of the new RES-based model and a Multi-Linear Regression (MLR) analysis model. In the RES-based model, the effective parameters are RMR (35.62%), Q (28.6%), q (specific charge of blasting) (20.35%), and A (15.42%), respectively, whereas for MLR analysis, the main parameters are RMR, Q (system), q, and A. These findings confirm the superior performance of the RES-based model over the other proposed models.

Keywords: Rock Engineering Systems, tunneling progress, Multi Linear Regression, Specific charge of blasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141
119 Distribution of Macrobenthic Polychaete Families in Relation to Environmental Parameters in North West Penang, Malaysia

Authors: Mohammad Gholizadeh, Khairun Yahya, Anita Talib, Omar Ahmad

Abstract:

The distribution of macrobenthic polychaetes along the coastal waters of Penang National Park was surveyed to estimate the effect of various environmental parameters at three stations (200m, 600m and 1200m) from the shoreline, during six sampling months, from June 2010 to April 2011.The use of polychaetes in descriptive ecology is surveyed in the light of a recent investigation particularly concerning the soft bottom biota environments. Polychaetes, often connected in the former to the notion of opportunistic species able to proliferate after an enhancement in organic matter, had performed a momentous role particularly with regard to effected soft-bottom habitats. The objective of this survey was to investigate different environment stress over soft bottom polychaete community along Teluk Ketapang and Pantai Acheh (Penang National Park) over a year period. Variations in the polychaete community were evaluated using univariate and multivariate methods. The results of PCA analysis displayed a positive relation between macrobenthic community structures and environmental parameters such as sediment particle size and organic matter in the coastal water. A total of 604 individuals were examined which was grouped into 23 families. Family Nereidae was the most abundant (22.68%), followed by Spionidae (22.02%), Hesionidae (12.58%), Nephtylidae (9.27%) and Orbiniidae (8.61%). It is noticeable that good results can only be obtained on the basis of good taxonomic resolution. We proposed that, in monitoring surveys, operative time could be optimized not only by working at a highertaxonomic level on the entire macrobenthic data set, but by also choosing an especially indicative group and working at lower taxonomic and good level.

Keywords: Polychaete families, environment parameters, Bioindicators, Pantai Acheh, Teluk Ketapang.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
118 Auto-Calibration and Optimization of Large-Scale Water Resources Systems

Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari

Abstract:

Water resource systems modeling has constantly been a challenge through history for human beings. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.

Keywords: Auto-calibration, Gilan, Large-Scale Water Resources, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
117 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process

Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon

Abstract:

In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.

Keywords: Fuzzy logic, paraconsistent annotated logic, level control, digital PID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
116 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
115 An Intelligent Scheme Switching for MIMO Systems Using Fuzzy Logic Technique

Authors: Robert O. Abolade, Olumide O. Ajayi, Zacheaus K. Adeyemo, Solomon A. Adeniran

Abstract:

Link adaptation is an important strategy for achieving robust wireless multimedia communications based on quality of service (QoS) demand. Scheme switching in multiple-input multiple-output (MIMO) systems is an aspect of link adaptation, and it involves selecting among different MIMO transmission schemes or modes so as to adapt to the varying radio channel conditions for the purpose of achieving QoS delivery. However, finding the most appropriate switching method in MIMO links is still a challenge as existing methods are either computationally complex or not always accurate. This paper presents an intelligent switching method for the MIMO system consisting of two schemes - transmit diversity (TD) and spatial multiplexing (SM) - using fuzzy logic technique. In this method, two channel quality indicators (CQI) namely average received signal-to-noise ratio (RSNR) and received signal strength indicator (RSSI) are measured and are passed as inputs to the fuzzy logic system which then gives a decision – an inference. The switching decision of the fuzzy logic system is fed back to the transmitter to switch between the TD and SM schemes. Simulation results show that the proposed fuzzy logic – based switching technique outperforms conventional static switching technique in terms of bit error rate and spectral efficiency.

Keywords: Channel quality indicator, fuzzy logic, link adaptation, MIMO, spatial multiplexing, transmit diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732