Search results for: response surface methodology
3058 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water
Authors: S. Areerachakul
Abstract:
Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25273057 A System for Analyzing and Eliciting Public Grievances Using Cache Enabled Big Data
Authors: P. Kaladevi, N. Giridharan
Abstract:
The system for analyzing and eliciting public grievances serves its main purpose to receive and process all sorts of complaints from the public and respond to users. Due to the more number of complaint data becomes big data which is difficult to store and process. The proposed system uses HDFS to store the big data and uses MapReduce to process the big data. The concept of cache was applied in the system to provide immediate response and timely action using big data analytics. Cache enabled big data increases the response time of the system. The unstructured data provided by the users are efficiently handled through map reduce algorithm. The processing of complaints takes place in the order of the hierarchy of the authority. The drawbacks of the traditional database system used in the existing system are set forth by our system by using Cache enabled Hadoop Distributed File System. MapReduce framework codes have the possible to leak the sensitive data through computation process. We propose a system that add noise to the output of the reduce phase to avoid signaling the presence of sensitive data. If the complaints are not processed in the ample time, then automatically it is forwarded to the higher authority. Hence it ensures assurance in processing. A copy of the filed complaint is sent as a digitally signed PDF document to the user mail id which serves as a proof. The system report serves to be an essential data while making important decisions based on legislation.Keywords: Big Data, Hadoop, HDFS, Caching, MapReduce, web personalization, e-governance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15923056 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates
Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer
Abstract:
Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.
Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23183055 Design and Fabrication of an Electrostatically Actuated Parallel-Plate Mirror by 3D-Printer
Authors: J. Mizuno, S. Takahashi
Abstract:
In this paper, design and fabrication of an actuated parallel-plate mirror based on a 3D-printer is described. The mirror and electrode layers are fabricated separately and assembled thereafter. The alignment is performed by dowel pin-hole pairs fabricated on the respective layers. The electrodes are formed on the surface of the electrode layer by Au ion sputtering using a suitable mask, which is also fabricated by a 3D-printer.For grounding the mirror layer, except the contact area with the electrode paths, all the surface is Au ion sputtered. 3D-printers are widely used for creating 3D models or mock-ups. The authors have recently proposed that these models can perform electromechanical functions such as actuators by suitably masking them followed by metallization process. Since the smallest possible fabrication size is in the order of sub-millimeters, these electromechanical devices are named by the authors as SMEMS (Sub-Milli Electro-Mechanical Systems) devices. The proposed mirror described in this paper which consists of parallel-plate electrostatic actuators is also one type of SMEMS devices. In addition, SMEMS is totally environment-clean compared to MEMS (Micro Electro-Mechanical Systems) fabrication processes because any hazardous chemicals or gases are utilized.
Keywords: MEMS, parallel-plate mirror, SMEMS, 3D-printer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18103054 Determination and Comparison of Fabric Pills Distribution Using Image Processing and Spatial Data Analysis Tools
Authors: Lenka Techniková, Maroš Tunák, Jiří Janáček
Abstract:
This work deals with the determination and comparison of pill patterns in 2 sets of fabric samples which differ in way of pill creation. The first set contains fabric samples with the pills created by simulation on a Martindale abrasion machine, while pills in the second set originated during normal wearing and maintenance. The goal of the study is to determine whether the pattern of the fabric pills created by simulation is the same as the pattern of naturally occurring pills. The system of determination and comparison of the pills is based on image processing and spatial data analysis tools. Firstly, 3D reconstruction of the fabric surfaces with the pills is realized with using a gradient fields method. The gradient fields method creates a 3D fabric surface from a set of 4 images. Thereafter, the pills are detected in 3D fabric surfaces using image-processing tools in the MATLAB software. Determination and comparison of the pills patterns of two sets of fabric samples is based on spatial data analysis using tools in R software.
Keywords: 3D reconstruction of the surface, image analysis tools, distribution of the pills, spatial data analysis tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21733053 Sensitivity and Reliability Analysis of Masonry Infilled Frames
Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar
Abstract:
The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.Keywords: Fragility curve, sensitivity analysis, reliability index, RC frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12053052 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.
Keywords: Calibration, dynamic range, radiometric resolution, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13403051 Modelling and Control of Milk Fermentation Process in Biochemical Reactor
Authors: Jožef Ritonja
Abstract:
The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.Keywords: Bioprocess engineering, biochemical reactor, fermentation process, modeling, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14873050 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra-High Performance Concrete Beams
Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes
Abstract:
Ultra-high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined that the fiber orientation was not significantly different. It is believed that the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting that a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.
Keywords: Fiber orientation, reinforced ultra-high performance concrete beams, shear, transverse steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163049 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks
Authors: T. Sattarpour, D. Nazarpour
Abstract:
This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.
Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17703048 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces
Authors: S. Matour, M. Mahdavinejad, R. Fayaz
Abstract:
Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.
Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12593047 Long Term Changes of Water Quality in Latvia
Authors: Maris Klavins, Valery Rodinov
Abstract:
The aim of this study was to analyze long term changes of surface water quality in Latvia, spatial variability of water chemical composition, possible impacts of different pollution sources as well as to analyze the measures to protect national water resources - river basin management. Within this study, the concentrations of major water ingredients and microelements in major rivers and lakes of Latvia have been determined. Metal concentrations in river and lake waters were compared with water chemical composition. The mean concentrations of trace metals in inland waters of Latvia are appreciably lower than the estimated world averages for river waters and close to or lower than background values, unless regional impacts determined by local geochemistry. This may be explained by a comparatively lower level of anthropogenic load. In the same time in several places, direct anthropogenic impacts are evident, regarding influences of point sources both transboundary transport impacts. Also, different processes related to pollution of surface waters in Latvia have been analyzed. At first the analysis of changes and composition of pollutant emissions in Latvia has been realized, and the obtained results were compared with actual composition of atmospheric precipitation and their changes in time.
Keywords: Water quality, trend analysis, pollution, human impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10033046 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination
Authors: N. Santatriniaina, J. Deseure, T.Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana
Abstract:
Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 [mm] is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.
Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31763045 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy
Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang
Abstract:
This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid-particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.
Keywords: Liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26483044 Capacities of Early Childhood Education Professionals for the Prevention of Social Exclusion of Children
Authors: Dejana Bouillet, Vlatka Domović
Abstract:
Both policymakers and researchers recognize that participating in early childhood education and care (ECEC) is useful for all children, especially for those who are exposed to the high risk of social exclusion. Social exclusion of children is understood as a multidimensional construct including economic, social, cultural, health, and other aspects of disadvantage and deprivation, which individually or combined can have an unfavorable effect on the current life and development of a child, as well as on the child’s development and on disadvantaged life chances in adult life. ECEC institutions should be able to promote educational approaches that portray developmental, cultural, language, and other diversity amongst children. However, little is known about the ways in which Croatian ECEC institutions recognize and respect the diversity of children and their families and how they respond to their educational needs. That is why this paper is dedicated to the analysis of the capacities of ECEC professionals to respond to the demands of educational needs of this very diverse group of children and their families. The results obtained in the frame of the project “Models of response to educational needs of children at risk of social exclusion in ECEC institutions,” funded by the Croatian Science Foundation, will be presented. The research methodology arises from explanations of educational processes and risks of social exclusion as a complex and heterogeneous phenomenon. The preliminary results of the qualitative data analysis of educational practices regarding capacities to identify and appropriately respond to the requirements of children at risk of social exclusion will be presented. The data have been collected by interviewing educational staff in 10 Croatian ECEC institutions (n = 10). The questions in the interviews were related to various aspects of inclusive institutional policy, culture, and practices. According to the analysis, it is possible to conclude that Croatian ECEC professionals are still faced with great challenges in the process of implementation of inclusive policies, culture, and practices. There are several baselines of this conclusion. The interviewed educational professionals are not familiar enough with the whole complexity and diversity of needs of children at risk of social exclusion, and the ECEC institutions do not have enough resources to provide all interventions that these children and their families need.
Keywords: children at risk of social exclusion, ECEC professionals, inclusive policies, culture and practices, interpretative phenomenological analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6293043 The Effect of Sport Specific Exercises on the Visual Skills of Rugby Players
Authors: P.J. Du Toit, P. Janse Van Vuuren , S. Le Roux , E. Henning, M. Kleynhans, H.C. Terblanche, D. Crafford, C. Grobbelaar, P.S. Wood, C.C. Grant, L. Fletcher
Abstract:
Introduction: Visual performance is an important factor in sport excellence. Visual involvement in a sport varies according to environmental demands associated with that sport. These environmental demands are matched by a task specific motor response. The purpose of this study was to determine if sport specific exercises will improve the visual performance of male rugby players, in order to achieve maximal results on the sports field. Materials & Methods: Twenty six adult male rugby players, aged 16-22, were chosen as subjects. In order to evaluate the effect of sport specific exercises on visual skills, a pre-test - post-test experimental group design was adopted for the study. Results: Significant differences (p≤0.05) were seen in the focussing, tracking, vergence, sequencing, eye-hand coordination and visualisation components Discussion & Conclusions: Sport specific exercises improved visual skills in rugby players which may provide them with an advantage over their opponents. This study suggests that these training programs and participation in regular on-line EyeDrills sports vision exercises (www.eyedrills.co.za) aimed at improving the athlete-s visual coordination, concentration, focus, hand-eye co-ordination, anticipation and motor response should be incorpotated in the rugby players exercise regime.
Keywords: Rugby players, sport specific exercises, visual skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22573042 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System
Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra
Abstract:
Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.Keywords: Steel structure, energy dissipation, friction-pendulum system, nonlinear analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13673041 Siding Mode Control of Pitch-Rate of an F-16 Aircraft
Authors: Ekprasit Promtun, Sridhar Seshagiri
Abstract:
This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32213040 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate
Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom
Abstract:
The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.
Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16173039 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.
Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13253038 Investigation of Increasing the Heat Transfer from Flat Surfaces Using Boundary Layer Excitation
Authors: M.H.Ghaffari
Abstract:
The present study is concerned with effect of exciting boundary layer on increase in heat transfer from flat surfaces. As any increase in heat transfer between a fluid inside a face and another one outside of it can cause an increase in some equipment's efficiency, so at this present we have tried to increase the wall's heat transfer coefficient by exciting the fluid boundary layer. By a collision between flow and the placed block at the fluid way, the flow pattern and the boundary layer stability will change. The flow way inside the channel is simulated as a 2&3-dimensional channel by Gambit TM software. With studying the achieved results by this simulation for the flow way inside the channel with a block coordinating with Fluent TM software, it's determined that the figure and dimensions of the exciter are too important for exciting the boundary layer so that any increase in block dimensions in vertical side against the flow and any reduction in its dimensions at the flow side can increase the average heat transfer coefficient from flat surface and increase the flow pressure loss. Using 2&3-dimensional analysis on exciting the flow at the flow way inside a channel by cylindrical block at the same time with the external flow, we came to this conclusion that the heat flux transferred from the surface, is increased considerably in terms of the condition without excitation. Also, the k-e turbulence model is used.Keywords: Cooling, Heat transfer, Turbulence, Excitingboundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11993037 Effect of Surface Pretreatments on Nanocrystalline Diamond Deposited On Silicon Nitride Substrates
Authors: D.N Awang Sh'ri, E. Hamzah
Abstract:
The deposition of diamond films on a Si3N4 substrate is an attractive technique for industrial applications because of the excellent properties of diamond. Pretreatment of substrate is very important prior to diamond deposition to promote nucleation and adhesion between coating and substrate. Deposition of nanocrystalline diamonds films on silicon nitride substrate have been carried out by HF-CVD technique using mixture of methane and hydrogen gases. Different pretreatment of substrate including chemical etching consists of hot acid etching and basic etching and mechanical etching were used to study the quality of diamond formed on the substrate. The structure and morphology of diamond coating have been studied using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) while diamond film quality has been characterized using Raman spectroscopy. AFM was used to investigate the effect of chemical etching and mechanical pretreatment on the surface roughness of the substrates and the resultant morphology of nanocrystalline diamond. It was found that diamond film deposited on as-received, basic etched and grinded substrate shows the morphology of cauliflower while blasted and acidic etched substrates produce smooth, continuous diamond film. However, the Raman investigation did not show any deviation in quality of diamond film for any pretreatment.Keywords: Nanocrystalline diamond, Chemical VaporDeposition, Pretreatment, Silicon Nitride
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22483036 Efficiency Based Model for Solar Urban Planning
Authors: Amado, M. P., Amado, A., Poggi, F., Correia de Freitas, J.
Abstract:
Today is widely understood that global energy consumption patterns are directly related to the urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals.
In this paper a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities and economic development and the local and global environment while safeguarding fairness in the energy sector.
Keywords: Solar urban planning, solar smart city, urban development, energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19633035 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea
Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin
Abstract:
Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.Keywords: Day night band, fishery, SAR, South China Sea.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10953034 Study of Reactive Wetting of Sn–0.7Cu and Sn–0.3Ag–0.7Cu Lead Free Solders during Solidification on Nickel Coated Al Substrates
Authors: Satyanarayana, K.N. Prabhu
Abstract:
Microstructure, wetting behavior and interfacial reactions between Sn–0.7Cu and Sn–0.3Ag–0.7Cu (SAC0307) solders solidified on Ni coated Al substrates were compared and investigated. Microstructure of Sn–0.7Cu alloy exhibited a eutectic matrix composed of primary β-Sn dendrites with a fine dispersion of Cu6Sn5 intermetallics whereas microstructure of SAC0307 alloy exhibited coarser Cu6Sn5 and finer Ag3Sn precipitates of IMCs with decreased tin dendrites. Contact angles ranging from 22° to 26° were obtained for Sn–0.7Cu solder solidified on substrate surface whereas for SAC0307 solder alloy contact angles were found to be in the range of 20° to 22°. Sn–0.7Cu solder/substrate interfacial region exhibited faceted (Cu, Ni)6Sn5 IMCs protruding into the solder matrix and a small amount of (Cu, Ni)3Sn4 intermetallics at the interface. SAC0307 solder/substrate interfacial region showed mainly (Cu, Ni)3Sn4 intermetallics adjacent to the coating layer and (Cu, Ni)6Sn5 IMCs in the solder matrix. The improvement in the wettability of SAC0307 solder alloy on substrate surface is attributed to the formation of cylindrical shape (Cu,Ni)6Sn5 and a layer of (Cu, Ni)3Sn4 IMCs at the interface.Keywords: Lead-free solder, wetting, contact angle, intermetallics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25503033 Laser Transmission through Vegetative Material
Authors: Juliana A. Fracarolli, Adilson M. Enes, Inácio M. Dal Fabbro, Silvestre Rodrigues
Abstract:
The dynamic speckle or biospeckle is an interference phenomenon generated at the reflection of a coherent light by an active surface or even by a particulate or living body surface. The above mentioned phenomenon gave scientific support to a method named biospeckle which has been employed to study seed viability, biological activity, tissue senescence, tissue water content, fruit bruising, etc. Since the above mentioned method is not invasive and yields numerical values, it can be considered for possible automation associated to several processes, including selection and sorting. Based on these preliminary considerations, this research work proposed to study the interaction of a laser beam with vegetative samples by measuring the incident light intensity and the transmitted light beam intensity at several vegetative slabs of varying thickness. Tests were carried on fifteen slices of apple tissue divided into three thickness groups, i.e., 4 mm, 5 mm, 18 mm and 22 mm. A diode laser beam of 10mW and 632 nm wavelength and a Samsung digital camera were employed to carry the tests. Outgoing images were analyzed by comparing the gray gradient of a fixed image column of each image to obtain a laser penetration scale into the tissue, according to the slice thickness.Keywords: Fruit, laser, laser transmission, vegetative tissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15763032 Effect of Precursors Aging Time on the Photocatalytic Activity of ZnO Thin Films
Authors: N. Kaneva, A. Bojinova, K. Papazova
Abstract:
Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied in the photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction, occurring on the surface of the films and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.
Keywords: ZnO thin films, sol-gel, photocatalysis, aging time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24493031 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating
Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye
Abstract:
Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500 °C but degrades beyond 600 °C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high-volume power density, demonstrating great potential in the fluid heating field.
Keywords: Conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4563030 An Automated Test Setup for the Characterization of Antenna in CATR
Authors: Faisal Amin, Abdul Mueed, Xu Jiadong
Abstract:
This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703029 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach
Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal
Abstract:
In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554