Search results for: processing demands.
325 Urban Land Cover Change of Olomouc City Using LANDSAT Images
Authors: Miloš Marjanović, Jaroslav Burian, Ja kub Miřijovský, Jan Harbula
Abstract:
This paper regards the phenomena of intensive suburbanization and urbanization in Olomouc city and in Olomouc region in general for the period of 1986–2009. A Remote Sensing approach that involves tracking of changes in Land Cover units is proposed to quantify the urbanization state and trends in temporal and spatial aspects. It actually consisted of two approaches, Experiment 1 and Experiment 2 which implied two different image classification solutions in order to provide Land Cover maps for each 1986–2009 time split available in the Landsat image set. Experiment 1 dealt with the unsupervised classification, while Experiment 2 involved semi- supervised classification, using a combination of object-based and pixel-based classifiers. The resulting Land Cover maps were subsequently quantified for the proportion of urban area unit and its trend through time, and also for the urban area unit stability, yielding the relation of spatial and temporal development of the urban area unit. Some outcomes seem promising but there is indisputably room for improvements of source data and also processing and filtering.
Keywords: Change detection, image classification, land cover, Landsat images, Olomouc city, urbanization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829324 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures
Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu
Abstract:
This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.Keywords: Swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823323 Formulation of Mortars with Marine Sediments
Authors: Nor-Edine Abriak, Mouhamadou Amar, Mahfoud Benzerzour
Abstract:
The transition to a more sustainable economy is directed by a reduction in the consumption of raw materials in equivalent production. The recovery of byproducts and especially the dredged sediment as mineral addition in cements matrix represents an alternative to reduce raw material consumption and construction sector’s carbon footprint. However, the efficient use of sediment requires adequate and optimal treatment. Several processing techniques have so far been applied in order to improve some physicochemical properties. The heat treatment by calcination was effective in removing the organic fraction and activates the pozzolanic properties. In this article, the effect of the optimized heat treatment of marine sediments in the physico-mechanical and environmental properties of mortars are shown. A finding is that the optimal substitution of a portion of cement by treated sediments by calcination at 750 °C helps to maintain or improve the mechanical properties of the cement matrix in comparison with a standard reference mortar. The use of calcined sediment enhances mortar behavior in terms of mechanical strength and durability. From an environmental point of view and life cycle, mortars formulated containing treated sediments are considered inert with respect to the inert waste storage facilities reference (ISDI-France).Keywords: Sediment, calcination, cement, reuse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886322 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon
Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon
Abstract:
A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.Keywords: Lekki Lagoon, marine sediment, bathymetry, grain size distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055321 Tool Wear Analysis in 3D Manufactured Ti6Al4V
Authors: David Downey
Abstract:
With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical, aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.
Keywords: Additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147320 A Budget and Deadline Constrained Fault Tolerant Load Balanced Scheduling Algorithm for Computational Grids
Authors: P. Keerthika, P. Suresh
Abstract:
Grid is an environment with millions of resources which are dynamic and heterogeneous in nature. A computational grid is one in which the resources are computing nodes and is meant for applications that involves larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Resource allocation is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline and resource failure. This work attempts in designing a resource allocation algorithm which is cost-effective and also targets at load balancing, fault tolerance and user satisfaction by considering the above requirements. The proposed Budget Constrained Load Balancing Fault Tolerant algorithm with user satisfaction (BLBFT) reduces the schedule makespan, schedule cost and task failure rate and improves resource utilization. Evaluation of the proposed BLBFT algorithm is done using Gridsim toolkit and the results are compared with the algorithms which separately concentrates on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts.Keywords: Grid Scheduling, Load Balancing, fault tolerance, makespan, cost, resource utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128319 Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis
Authors: FH. Sarieddeen, R. El Berbari, S. Imad, J. Abdel Baki, M. Hamad, R. Blanc, A. Nakib, Y.Chenoune
Abstract:
Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.
Keywords: Brain arteriovenous malformation (BAVM), 3-D rotational angiography (3DRA), K-Means (KM) clustering, Fuzzy CMeans (FCM) clustering, Expectation Maximization (EM) clustering, volume rendering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908318 Pollution Induced Structural and Physico-Chemical Changes in Algal Community: A Case Study of River Pandu of North India
Authors: Seemaa Diwedi
Abstract:
The study area receives a wide variety of wastes generated by municipalities and the industries like paints and pigments, metal processing industries, thermal power plants electroprocessing industries etc. The Physico-chemical and structural investigation of water from river Pandu indicated high level of chlorides and calcium which made the water unsuitable for human use. Algae like Cyclotella fumida, Asterionella Formosa, Cladophora glomerata, Pediastrum simplex, Scenedesmus bijuga, Cladophora glomerata were the dominant pollution tolerant species recorded under these conditions. The sensitive and less abundant species of algae included Spirogyra sps., Merismopedia sps. The predominance colonies of Zygnema sps, Phormidium sps, Mycrocystis aeruginosa, Merismopedia minima, Pandorina morum, seems to correlate with high organic contents of Pandu river water. This study assumes significance as some algae can be used as bioindicators of water pollution and algal floral of a municipal drain carrying waste effluents from industrial area Kanpur and discharge them into the river Pandu flowing onto southern outskirts of Kanpur city.Keywords: Kanpur, North India, Physico-chemical, Pollution, River Pandu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907317 Graph Codes-2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval
Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje
Abstract:
Multimedia Indexing and Retrieval is generally de-signed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, espe-cially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelisation. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.
Keywords: indexing, retrieval, multimedia, graph code, graph algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440316 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269315 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323314 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling
Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar
Abstract:
Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.Keywords: Toolpath, part program, optimization, pocket.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017313 Production of Energetic Nanomaterials by Spray Flash Evaporation
Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer
Abstract:
Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.
Keywords: Continuous synthesis, energetic material, nanoscale, nanothermite, nanoexplosive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434312 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix-to-Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on Convolutional Neural Networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an Autoencoders-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the Pix-to-Pix GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.
Keywords: Low light image enhancement, deep learning, convolutional neural network, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29311 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters
Authors: K. Parandhama Gowd
Abstract:
The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.Keywords: Flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452310 Towards the Design of a GIS-Linked Agent-Based Model for the Lake Chad Basin Region: Challenges and Opportunities
Authors: Stephen Akuma, Isaac Terngu Adom, Evelyn Doofan Akuma
Abstract:
Generation after generation of humans has experienced conflicts leading to needless deaths. Usually, it begins as a minor argument that occasionally escalates into a full-fledged conflict. There has been a lingering crisis in the Lake Chad Basin (LCB) of Africa for over a decade leading to bloodshed that has claimed thousands of lives. The terrorist group, Boko Haram has claimed responsibility for these deaths. Efforts have been made by the governments in the LCB region to end the crisis through kinetic approaches, but the conflict persists. In this work, we explored non-kinetic methods used by social scientists in resolving conflicts, with a focus on computational approaches due to the increasing processing power of the computer. Firstly, we reviewed the innovative computational methods available for researchers working on conflict, violence, and peace. Secondly, we described how an Agent-Based Model (ABM) can be linked with a Geographic Information System (GIS) to model the LCB. Finally, this research discusses the challenges and opportunities in constructing a Geographic Information System linked Agent-Based Model of the LCB region.
Keywords: Agent-based modelling, conflict, Geographical Information Systems, Lake Chad Basin, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140309 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31308 Automatic Generating CNC-Code for Milling Machine
Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert
Abstract:
G-code is the main factor in computer numerical control (CNC) machine for controlling the toolpaths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.
Keywords: Geometric shapes, Milling operation, Minor changes, CNC Machine, G-code, and Cutting parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7375307 Effective Scheduling of Semiconductor Manufacturing using Simulation
Authors: Ingy A. El-Khouly, Khaled S. El-Kilany, Aziz E. El-Sayed
Abstract:
The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.Keywords: Dispatching rules, lot release policy, re-entrant flowshop, semiconductor manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570306 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.
Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858305 Sonic Localization Cues for Classrooms: A Structural Model Proposal
Authors: Abhijit Mitra, C. Ardil
Abstract:
We investigate sonic cues for binaural sound localization within classrooms and present a structural model for the same. Two of the primary cues for localization, interaural time difference (ITD) and interaural level difference (ILD) created between the two ears by sounds from a particular point in space, are used. Although these cues do not lend any information about the elevation of a sound source, the torso, head, and outer ear carry out elevation dependent spectral filtering of sounds before they reach the inner ear. This effect is commonly captured in head related transfer function (HRTF) which aids in resolving the ambiguity from the ITDs and ILDs alone and helps localize sounds in free space. The proposed structural model of HRTF produces well controlled horizontal as well as vertical effects. The implemented HRTF is a signal processing model which tries to mimic the physical effects of the sounds interacting with different parts of the body. The effectiveness of the method is tested by synthesizing spatial audio, in MATLAB, for use in listening tests with human subjects and is found to yield satisfactory results in comparison with existing models.
Keywords: Auditory localization, Binaural sound, Head related impulse response, Head related transfer function, Interaural level difference, Interaural time difference, Localization cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728304 An Approach to Polynomial Curve Comparison in Geometric Object Database
Authors: Chanon Aphirukmatakun, Natasha Dejdumrong
Abstract:
In image processing and visualization, comparing two bitmapped images needs to be compared from their pixels by matching pixel-by-pixel. Consequently, it takes a lot of computational time while the comparison of two vector-based images is significantly faster. Sometimes these raster graphics images can be approximately converted into the vector-based images by various techniques. After conversion, the problem of comparing two raster graphics images can be reduced to the problem of comparing vector graphics images. Hence, the problem of comparing pixel-by-pixel can be reduced to the problem of polynomial comparisons. In computer aided geometric design (CAGD), the vector graphics images are the composition of curves and surfaces. Curves are defined by a sequence of control points and their polynomials. In this paper, the control points will be considerably used to compare curves. The same curves after relocated or rotated are treated to be equivalent while two curves after different scaled are considered to be similar curves. This paper proposed an algorithm for comparing the polynomial curves by using the control points for equivalence and similarity. In addition, the geometric object-oriented database used to keep the curve information has also been defined in XML format for further used in curve comparisons.Keywords: Bezier curve, Said-Ball curve, Wang-Ball curve, DP curve, CAGD, comparison, geometric object database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216303 Limestone Briquette Production and Characterization
Authors: André C. Silva, Mariana R. Barros, Elenice M. S. Silva, Douglas. Y. Marinho, Diego F. Lopes, Débora N. Sousa, Raphael S. Tomáz
Abstract:
Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction.
Keywords: Agglomeration, briquetting, limestone, agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597302 ECG-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.
Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187301 Error Factors in Vertical Positioning System
Authors: Hyun-Gwang Cho, Wan-Seok Yang, Su-Jin Kim, Jeong-Seok Oh, Chun-Hong Park
Abstract:
Machine tools are improved capacity remarkably during the 20th century. Improving the precision of machine tools are related with precision of products and accurate processing is always associated with the subject of interest. There are a lot of the elements that determine the precision of the machine, as guides, motors, structure, control, etc. In this paper we focused on the phenomenon that vertical movement system has worse precision than horizontal movement system even they were made up with same components. The vertical movement system needs to be studied differently from the horizontal movement system to develop its precision. The vertical movement system has load on its transfer direction and it makes the movement system weak in precision than the horizontal one. Some machines have mechanical counter balance, hydraulic or pneumatic counter balance to compensate the weight of the machine head. And there is several type of compensating the weight. It can push the machine head and also can use chain or wire lope to transfer the compensating force from counter balance to machine head. According to the type of compensating, there could be error from friction, pressure error of hydraulic or pressure control error. Also according to what to use for transferring the compensating force, transfer error of compensating force could be occur.
Keywords: Chain chordal action, counter balance, setup error, vertical positioning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099300 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste
Authors: Masaumi Nakahara, Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura
Abstract:
In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency.
Keywords: High level radioactive solid waste, advanced reactor fuel reprocessing, radioactive waste disposal, nuclear fuel cycle technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918299 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling
Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger
Abstract:
Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.
Keywords: Finite Element Analysis, FEA, Fused Deposition Modelling, residual stress, warpage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479298 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, Optical Forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130297 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car
Authors: Erik Vassøy Olsen, Hirpa G. Lemu
Abstract:
Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat racecar they have designed and built. Design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the competition requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm, so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.Keywords: Composite material, formula student, ion racing, monocoque design, structural equivalence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6222296 An Investigation of the Effects of Emotional Experience Induction on Mirror Neurons System Activity with Regard to Spectrum of Depressive Symptoms
Authors: Elyas Akbari, Jafar Hasani, Newsha Dehestani, Mohammad Khaleghi, Alireza Moradi
Abstract:
The aim of the present study was to assess the effect of emotional experience induction in the mirror neurons systems (MNS) activity with regard to the spectrum of depressive symptoms. For this purpose, at first stage, 449 students of Kharazmi University of Tehran were selected randomly and completed the second version of the Beck Depression Inventory (BDI-II). Then, 36 students with standard Z-score equal or above +1.5 and equal or equal or below -1.5 were selected to construct two groups of high and low spectrum of depressive symptoms. In the next stage, the basic activity of MNS was recorded (mu wave) before presenting the positive and negative emotional video clips by Electroencephalography (EEG) technique. The findings related to emotion induction (neutral, negative and positive emotion) demonstrated that the activity of recorded mirror neuron areas had a significant difference between the depressive and non-depressive groups. These findings suggest that probably processing of negative emotions in depressive individuals is due to the idea that the mirror neurons in motor cortex matched up the activity of cognitive regions with the person’s schema. Considering the results of the present study, it could be said that the MNS provides a substrate where emotional disorders can be studied and evaluated.
Keywords: Emotional experiences, mirror neurons, depressive symptoms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165