Search results for: telemetry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13

Search results for: telemetry

13 Low-Latency and Low-Overhead Path Planning for In-band Network-Wide Telemetry

Authors: Penghui Zhang, Hua Zhang, Jun-Bo Wang, Cheng Zeng, Zijian Cao

Abstract:

With the development of software-defined networks and programmable data planes, in-band network telemetry (INT) has become an emerging technology in communications because it can get accurate and real-time network information. However, due to the expansion of the network scale, existing telemetry systems, to the best of the authors’ knowledge, have difficulty in meeting the common requirements of low overhead, low latency and full coverage for traffic measurement. This paper proposes a network-wide telemetry system with a low-latency low-overhead path planning (INT-LLPP). This paper builds a mathematical model to analyze the telemetry overhead and latency of INT systems. Then, we adopt a greedy-based path planning algorithm to reduce the overhead and latency of the network telemetry with the full network coverage. The simulation results show that network-wide telemetry is achieved and the telemetry overhead can be reduced significantly compared with existing INT systems. INT-LLPP can control the system latency to get real-time network information.

Keywords: Network telemetry, network monitoring, path planning, low latency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127
12 Development of Indwelling Wireless pH Telemetry of Intraoral Acidity

Authors: Jung-hoon Ro, Soo-young Ye, Jae-hee Jung, Ah-young Jeon, Yun-jin KimIn-cheol Kim, Chul-han Kim, Gye-rok Jeon

Abstract:

As the increase of intraoral acidity due to ingestion of sweet foods and acidic beverages usually bring forth a dental caries and a erosion, the measurement of intraoral pH is essential in the study of oral environment. The indwelling intraoral pH telemetry for lasting longer than 24 hours in the mouth was developed to overcome the limits of conventional wire electrode method previously used for salivary and plaque pH measurement, and to assess its effectiveness.

Keywords: pH telemetry, intraoral acidity, wireless.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
11 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
10 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm

Authors: B. Nassar, W. Hussein, M. Mokhtar

Abstract:

The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
9 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components

Authors: A. Lovascio, A. D’Orazio, V. Centonze

Abstract:

From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.

Keywords: COTS, small satellites, sub-sampling, TT&C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
8 Demystifying Full-Stack Observability: Mastering Visibility, Insight, and Action in the Modern Digital Landscape

Authors: Ashly Joseph

Abstract:

In the era of digital transformation, full-stack observability has emerged as a crucial aspect of administering modern application stacks. This research paper presents the concept of full-stack observability, its significance in the context of contemporary application stacks, and the challenges posed by swiftly evolving digital environments. In addition, it describes how full-stack observability intends to provide complete visibility and actionable insights by correlating telemetry across multiple domains.

Keywords: Actionable insights, digital transformation, full-stack observability, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138
7 Hospital Based Electrocardiogram Sensor Grid

Authors: Suken Nayak, Aditya Kambli, Bharati Ingale, Gauri Shukla

Abstract:

The technological concepts such as wireless hospital and portable cardiac telemetry system require the development of physiological signal acquisition devices to be easily integrated into the hospital database. In this paper we present the low cost, portable wireless ECG acquisition hardware that transmits ECG signals to a dedicated computer.The front end of the system obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless Bluetooth module. A monitoring purpose Bluetooth based end user application integrated with patient database management module is developed for the computers. The system will act as a continuous event recorder, which can be used to follow up patients who have been resuscitatedfrom cardiac arrest, ventricular tachycardia but also for diagnostic purposes for patients with arrhythmia symptoms. In addition, cardiac information can be saved into the patient-s database of the hospital.

Keywords: ECG, Bluetooth communication, monitoring application, patient database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
6 Totally Integrated Smart Energy System through Data Acquisition via Remote Location

Authors: Muhammad Tahir Qadri, M. Irfan Anis, M. Nawaz Irshad Khan

Abstract:

This paper discusses the approach of real-time controlling of the energy management system using the data acquisition tool of LabVIEW. The main idea of this inspiration was to interface the Station (PC) with the system and publish the data on internet using LabVIEW. In this venture, controlling and switching of 3 phase AC loads are effectively and efficiently done. The phases are also sensed through devices. In case of any failure the attached generator starts functioning automatically. The computer sends command to the system and system respond to the request. The modern feature is to access and control the system world-wide using world wide web (internet). This controlling can be done at any time from anywhere to effectively use the energy especially in developing countries where energy management is a big problem. In this system totally integrated devices are used to operate via remote location.

Keywords: VI-server, Remote Access, Telemetry, Data Acquisition, web server.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
5 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application

Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu

Abstract:

This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.

Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
4 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters

Authors: K. Parandhama Gowd

Abstract:

The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.

Keywords: Flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
3 A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV

Authors: B. O. Olawale, C. R. Chatwin, R. C. D. Young, P. M. Birch, F. O. Faithpraise, A. O. Olukiran

Abstract:

In this paper, we present a four-step ortho-rectification procedure for real-time geo-referencing of video data from a low-cost UAV equipped with a multi-sensor system. The basic procedures for the real-time ortho-rectification are: (1) decompilation of the video stream into individual frames; (2) establishing the interior camera orientation parameters; (3) determining the relative orientation parameters for each video frame with respect to each other; (4) finding the absolute orientation parameters, using a self-calibration bundle and adjustment with the aid of a mathematical model. Each ortho-rectified video frame is then mosaicked together to produce a mosaic image of the test area, which is then merged with a well referenced existing digital map for the purpose of geo-referencing and aerial surveillance. A test field located in Abuja, Nigeria was used to evaluate our method. Video and telemetry data were collected for about fifteen minutes, and they were processed using the four-step ortho-rectification procedure. The results demonstrated that the geometric measurement of the control field from ortho-images is more accurate when compared with those from original perspective images when used to pin point the exact location of targets on the video imagery acquired by the UAV. The 2-D planimetric accuracy when compared with the 6 control points measured by a GPS receiver is between 3 to 5 metres.

Keywords: Geo-referencing, ortho-rectification, video frame, self-calibration, UAV, target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
2 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations

Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward

Abstract:

A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.

Keywords: Critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120