Search results for: Controller Output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1864

Search results for: Controller Output

334 Classification of Soil Aptness to Establish of Panicum virgatum in Mississippi using Sensitivity Analysis and GIS

Authors: Eduardo F. Arias, William Cooke III, Zhaofei Fan, William Kingery

Abstract:

During the last decade Panicum virgatum, known as Switchgrass, has been broadly studied because of its remarkable attributes as a substitute pasture and as a functional biofuel source. The objective of this investigation was to establish soil suitability for Switchgrass in the State of Mississippi. A linear weighted additive model was developed to forecast soil suitability. Multicriteria analysis and Sensitivity analysis were utilized to adjust and optimize the model. The model was fit using seven years of field data associated with soils characteristics collected from Natural Resources Conservation System - United States Department of Agriculture (NRCS-USDA). The best model was selected by correlating calculated biomass yield with each model's soils-based output for Switchgrass suitability. Coefficient of determination (r2) was the decisive factor used to establish the 'best' soil suitability model. Coefficients associated with the 'best' model were implemented within a Geographic Information System (GIS) to create a map of relative soil suitability for Switchgrass in Mississippi. A Geodatabase associated with soil parameters was built and is available for future Geographic Information System use.

Keywords: Aptness, GIS, sensitivity analysis, switchgrass, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
333 Optimization Approaches for a Complex Dairy Farm Simulation Model

Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu

Abstract:

This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.

Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
332 An Evaluation of Software Connection Methods for Heterogeneous Sensor Networks

Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read

Abstract:

The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.

Keywords: Wireless sensor networks, remote method invocation, transmission time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
331 Constructing a Suitable Model of Distance Training for Community Leader in the Upper Northeastern Region

Authors: Teerawach Khamkorn, Laongtip Mathurasa, Savittree Rochanasmita Arnold, Witthaya Mekhum

Abstract:

The objective of this research intends to create a suitable model of distance training for community leaders in the upper northeastern region of Thailand. The implementation of the research process is divided into four steps: The first step is to analyze relevant documents. The second step deals with an interview in depth with experts. The third step is concerned with constructing a model. And the fourth step takes aim at model validation by expert assessments. The findings reveal the two important components for constructing an appropriate model of distance training for community leaders in the upper northeastern region. The first component consists of the context of technology management, e.g., principle, policy and goals. The second component can be viewed in two ways. Firstly, there are elements comprising input, process, output and feedback. Secondly, the sub-components include steps and process in training. The result of expert assessments informs that the researcher-s constructed model is consistent and suitable and overall the most appropriate.

Keywords: Constructing, Distance Training, Management, Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
330 Numerical Modeling of Artisanal and Small-Scale Mining of Coltan in the African Great Lakes Region

Authors: Sergio Perez Rodriguez

Abstract:

Findings of a production model of Artisanal and Small-Scale Mining (ASM) of coltan ore by an average Democratic Republic of Congo (DRC) mineworker are presented in this paper. These can be used as a reference for a similar characterization of the daily labor of counterparts from other countries in the Africa's Great Lakes region. To that end, the Fundamental Equation of Mineral Production has been applied in this paper, considering a miner's average daily output of coltan, estimated in the base of gross statistical data gathered from reputable sources. Results indicate daily yields of individual miners in the order of 300 g of coltan ore, with hourly peaks of production in the range of 30 to 40 g of the mineral. Yields are expected to be in the order of 5 g or less during the least productive hours. These outputs are expected to be achieved during the halves of the eight to 10 hours of daily working sessions that these artisanal laborers can attend during the mining season.

Keywords: Coltan, mineral production, Production to Reserve ratio, artisanal mining, small-scale mining, ASM, human work, Great Lakes region, Democratic Republic of Congo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
329 Low Energy Method for Data Delivery in Ubiquitous Network

Authors: Tae Kyung Kim, Hee Suk Seo

Abstract:

Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.

Keywords: Data delivery, routing, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
328 The Tag Authentication Scheme using Self-Shrinking Generator on RFID System

Authors: HangRok Lee, DoWon Hong

Abstract:

Since communications between tag and reader in RFID system are by radio, anyone can access the tag and obtain its any information. And a tag always replies with the same ID so that it is hard to distinguish between a real and a fake tag. Thus, there are many security problems in today-s RFID System. Firstly, unauthorized reader can easily read the ID information of any Tag. Secondly, Adversary can easily cheat the legitimate reader using the collected Tag ID information, such as the any legitimate Tag. These security problems can be typically solved by encryption of messages transmitted between Tag and Reader and by authentication for Tag. In this paper, to solve these security problems on RFID system, we propose the Tag Authentication Scheme based on self shrinking generator (SSG). SSG Algorithm using in our scheme is proposed by W.Meier and O.Staffelbach in EUROCRYPT-94. This Algorithm is organized that only one LFSR and selection logic in order to generate random stream. Thus it is optimized to implement the hardware logic on devices with extremely limited resource, and the output generating from SSG at each time do role as random stream so that it is allow our to design the light-weight authentication scheme with security against some network attacks. Therefore, we propose the novel tag authentication scheme which use SSG to encrypt the Tag-ID transmitted from tag to reader and achieve authentication of tag.

Keywords: RFID system, RFID security, self shrinkinggeneratior, authentication, protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
327 Mutation Rate for Evolvable Hardware

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

Evolvable hardware (EHW) refers to a selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). A lot of research has been done in this area several different EA have been introduced. Every time a specific EA is chosen for solving a particular problem, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade a lot of research has been carried out in order to identify the best parameters for the EA-s components for different “test-problems". However different researchers propose different solutions. In this paper the behaviour of mutation rate on (1+λ) evolution strategy (ES) for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies values of the logic cell inputs, the cell type (for example from AND to NOR) and the circuit output. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates used for the evolved circuits. The experimental results found provide the behaviour of the mutation rate to be used during evolution for the design and optimization of logic circuits. The researches on the best mutation rate during the last 40 years are also summarized.

Keywords: Evolvable hardware, mutation rate, evolutionarycomputation, design of logic circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
326 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles

Authors: Philip Speranza

Abstract:

As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.

Keywords: Transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
325 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification

Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal

Abstract:

In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.

Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
324 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion post-combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
323 Two States Mapping Based Neural Network Model for Decreasing of Prediction Residual Error

Authors: Insung Jung, lockjo Koo, Gi-Nam Wang

Abstract:

The objective of this paper is to design a model of human vital sign prediction for decreasing prediction error by using two states mapping based time series neural network BP (back-propagation) model. Normally, lot of industries has been applying the neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has a residual error between real value and prediction output. Therefore, we designed two states of neural network model for compensation of residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We found that most of simulations cases were satisfied by the two states mapping based time series prediction model compared to normal BP. In particular, small sample size of times series were more accurate than the standard MLP model. We expect that this algorithm can be available to sudden death prevention and monitoring AGENT system in a ubiquitous homecare environment.

Keywords: Neural network, U-healthcare, prediction, timeseries, computer aided prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
322 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator

Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi

Abstract:

In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.

Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
321 Packet Losses Interpretation in Mobile Internet

Authors: Hossam el-ddin Mostafa, Pavel Čičak

Abstract:

The mobile users with Laptops need to have an efficient access to i.e. their home personal data or to the Internet from any place in the world, regardless of their location or point of attachment, especially while roaming outside the home subnet. An efficient interpretation of packet losses problem that is encountered from this roaming is to the centric of all aspects in this work, to be over-highlighted. The main previous works, such as BER-systems, Amigos, and ns-2 implementation that are considered to be in conjunction with that problem under study are reviewed and discussed. Their drawbacks and limitations, of stopping only at monitoring, and not to provide an actual solution for eliminating or even restricting these losses, are mentioned. Besides that, the framework around which we built a Triple-R sequence as a costeffective solution to eliminate the packet losses and bridge the gap between subnets, an area that until now has been largely neglected, is presented. The results show that, in addition to the high bit error rate of wireless mobile networks, mainly the low efficiency of mobile-IP registration procedure is a direct cause of these packet losses. Furthermore, the output of packet losses interpretation resulted an illustrated triangle of the registration process. This triangle should be further researched and analyzed in our future work.

Keywords: Amigos, BER-systems, ns-2 implementation, packetlosses, registration process, roaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
320 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast

Authors: Sher Muhammad, Mirza Muhammad Waqar

Abstract:

It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.790 to 24.850 in latitude and 66.910 to 66.970 in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image pre processing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end member extraction. Well distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF) and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (White Mangroves) and Avicennia germinans (Black Mangroves) have been observed throughout the study area.

Keywords: Mangrove, Hyperspectral, SAM, SFF, SID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
319 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation

Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita

Abstract:

In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.

Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
318 Noise Performance of Magnetic Field Tunable Avalanche Transit Time Source

Authors: Partha Banerjee, Aritra Acharyya, Arindam Biswas, A. K. Bhattacharjee, Amit Banerjee, Hiroshi Inokawa

Abstract:

The effect of magnetic field on the noise performance of the magnetic field tunable avalanche transit time (MAGTATT) device based on Si, designed to operate at W-band (75 – 110 GHz), has been studied in this paper. A comprehensive two-dimensional (2D) model has been developed. The simulation results show that due to the presence of applied external transverse magnetic field, both the noise spectral density and noise measure of the MAGTATT device increase significantly. The noise performance of the device has been found to be further deteriorated if the magnetic field strength is further increased. Hence, in order to achieve the magnetic field tuning of the radio frequency (RF) properties of impact avalanche transit time (IMPATT) source, the noise performance of it has to be sacrificed in fair extent. Moreover, it clearly indicates that an IMPATT source must be covered with appropriate magnetic shielding material to avoid undesirable shift in operating frequency and output power and objectionable amount of deterioration in noise performance due to the presence of external magnetic field.

Keywords: 2-D model, IMPATT, MAGTATT, mm-wave, noise performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
317 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, Prediction, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
316 Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper

Authors: H. Juma, F. Al-hujaili, R. Kashani

Abstract:

Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.

Keywords: Tuned mass damper, air spring, semi-active, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
315 Linear Programming Application in Unit Commitment of Wind Farms with Considering Uncertainties

Authors: M. Esmaeeli Shahrakht, A. Kazemi

Abstract:

Due to uncertainty of wind velocity, wind power generators don’t have deterministic output power. Utilizing wind power generation and thermal power plants together create new concerns for operation engineers of power systems. In this paper, a model is presented to implement the uncertainty of load and generated wind power which can be utilized in power system operation planning. Stochastic behavior of parameters is simulated by generating scenarios that can be solved by deterministic method. A mixed-integer linear programming method is used for solving deterministic generation scheduling problem. The proposed approach is applied to a 12-unit test system including 10 thermal units and 2 wind farms. The results show affectivity of piecewise linear model in unit commitment problems. Also using linear programming causes a considerable reduction in calculation times and guarantees convergence to the global optimum. Neglecting the uncertainty of wind velocity causes higher cost assessment of generation scheduling.

Keywords: Load uncertainty, linear programming, scenario generation, unit commitment, wind farm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
314 Respirator System For Total Liquid Ventilation

Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe

Abstract:

Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.

Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
313 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
312 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
311 Prediction of Dissolved Oxygen in Rivers Using a Wang-Mendel Method – Case Study of Au Sable River

Authors: Mahmoud R. Shaghaghian

Abstract:

Amount of dissolve oxygen in a river has a great direct affect on aquatic macroinvertebrates and this would influence on the region ecosystem indirectly. In this paper it is tried to predict dissolved oxygen in rivers by employing an easy Fuzzy Logic Modeling, Wang Mendel method. This model just uses previous records to estimate upcoming values. For this purpose daily and hourly records of eight stations in Au Sable watershed in Michigan, United States are employed for 12 years and 50 days period respectively. Calculations indicate that for long period prediction it is better to increase input intervals. But for filling missed data it is advisable to decrease the interval. Increasing partitioning of input and output features influence a little on accuracy but make the model too time consuming. Increment in number of input data also act like number of partitioning. Large amount of train data does not modify accuracy essentially, so, an optimum training length should be selected.

Keywords: Dissolved oxygen, Au Sable, fuzzy logic modeling, Wang Mendel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
310 Optimising Data Transmission in Heterogeneous Sensor Networks

Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read

Abstract:

The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data.  This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI.  Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.

Keywords: Wireless sensor networks, remote method invocation, transmission time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
309 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
308 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification

Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan

Abstract:

The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.

Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
307 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics

Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid

Abstract:

Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.

Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
306 MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma

Abstract:

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Keywords: MIMO, Artificial Neural Network (ANN), CMA, LS, CSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
305 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: Power plant, Efficiency improvement, Carbon dioxide Emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107