Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30135
Noise Performance of Magnetic Field Tunable Avalanche Transit Time Source

Authors: Partha Banerjee, Aritra Acharyya, Arindam Biswas, A. K. Bhattacharjee, Amit Banerjee, Hiroshi Inokawa

Abstract:

The effect of magnetic field on the noise performance of the magnetic field tunable avalanche transit time (MAGTATT) device based on Si, designed to operate at W-band (75 – 110 GHz), has been studied in this paper. A comprehensive two-dimensional (2D) model has been developed. The simulation results show that due to the presence of applied external transverse magnetic field, both the noise spectral density and noise measure of the MAGTATT device increase significantly. The noise performance of the device has been found to be further deteriorated if the magnetic field strength is further increased. Hence, in order to achieve the magnetic field tuning of the radio frequency (RF) properties of impact avalanche transit time (IMPATT) source, the noise performance of it has to be sacrificed in fair extent. Moreover, it clearly indicates that an IMPATT source must be covered with appropriate magnetic shielding material to avoid undesirable shift in operating frequency and output power and objectionable amount of deterioration in noise performance due to the presence of external magnetic field.

Keywords: 2-D model, IMPATT, MAGTATT, mm-wave, noise performance.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1474857

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255

References:


[1] M. Gilden, and M. E. Hines, “Electronic tuning effects in Read microwave avalanche diode,” IEEE Trans. on Electron. Devices, vol. 13, pp. 169-175, 1966.
[2] A. Schweighart, H. P. Vyas, J. M. Borrego, and R. J. Gutmann, “Avalanche diode structure suitable for microwave-optical interaction,” Solid-Sate Electron. , vol. 21, pp. 1119-1121, 1978.
[3] H. P. Vyas, R. J. Gutmann, and J. M. Borrego, “Effect of hole versus electron photocurrent on microwave-optical interactions in impatt oscillators,” IEEE Transactions on Electron Devices, vol. 26, pp. 232-234, 1979.
[4] J. R. Forrest, and A. J. Seeds, “Optical injection locking of impatt oscillators,” Electronics Letters, vol. 14, pp. 626-627, 1978.
[5] A. J. Seeds, and A. Augusto, “Optical control of microwave semiconductor devices,” IEEE trans. on Microwave Theory and Techniques, vol. 38, pp. 577-585, 1990.
[6] B. Glance, “A Magnetically Tunable Microstrip IMPATT Oscillator,” IEEE Transaction of Microwave Theory and Techniques, vol. 21, pp. 425-426, 1973.
[7] R. A. Pucel, and D. J. Mass “Microstrip propagation on magnetic substrates—Part I: Design theory,” IEEE Trans. Microwave Theory Tech., vol. 20, pp. 304-308, 1972.
[8] H. L. Hartnagel, G. P. Srivastava, P. C. Mathur, and V. Sharma, “Effect of Transverse Magnetic Field on the Power Output and Frequency of IMPATT Oscillators,” physica status solidi (a), vol. 3, pp. 1K147-K149, 1975.
[9] P. Banerjee, A. Acharyya, A. Biswas, and A. K. Bhattacharjee, “Effect of Magnetic Field on the RF Performance of Millimeter-Wave IMPATT Source,” Journal of Computational Electronics, vol. 15, pp. 210-221, 2016.
[10] A. S. Tager, “Current fluctuations in semiconductor (dielectric) under the conditions of impact ionization and avalanche breakdown,” Sov. Phys. Solid State, vol. 4, pp. 1919-1925, 1965.
[11] M. E. Hines, “Noise theory of Read type avalanche diode,” IEEE Trans. Electron Devices, vol. 13, pp. 158-163, 1966.
[12] H. K. Gummel, and J. L. Blue, “A small-signal theory of avalanchenoisein IMPATT diodes,” IEEE Trans. on Electron Devices, vol. 14, pp. 569-580, 1967.
[13] R. L. Kuvas, “Noise in IMPATT diodes: Intrinsic properties,” IEEE Trans. Electron Devices, vol. 19, pp. 220-233, 1972.
[14] G. N. Dash, J. K. Mishra, and A. K. Panda, “Noise in Mixed Tunneling Avalanche Transit Time (MITATT) diodes,” Solid State Electronics, vol. 39, pp. 1473-1479, 1996.
[15] J. K. Mishra, A. K. Panda, and G. N. Dash, “An extremely low-noise heterojunction IMPATT,” IEEE Trans. Electron Devices, vol. 44, 2143-2148, 1997.
[16] A. Acharyya, M. Mukherjee, and J. P. Banerjee, “Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time (MITATT) Diode,” International Journal of Electrical and Electronics Engineering, vol. 4, 577-584, 2010.
[17] A. Acharyya, S.Banerjee, and J. P. Banerjee, “Effect of Photo-Irradiation on the Noise Properties of Double-Drift Silicon MITATT Device,” International Journal of Electronics, vol. 101, pp. 1270-1286, 2014.
[18] P. Banerjee, Q. Hao, A. Biswas, A. K. Bhattacharjee and A. Acharyya, “Avalanche Noise in Magnetic Field Tunable Avalanche Transit Time Device,” in Proceedings of IEEE International Conference on Computer, Electrical and Communication Engineering (ICCECE), Kolkata, West Bengal, India, 16th and 17th December, pp. 1-4, 2016, DOI: 10.1109/ICCECE.2016.8009570.
[19] A. Acharyya, “RF Performance of IMPATT Sources and Their Optical Control,”Lambert Academic Publishing, Germany, 2015.
[20] A. Acharyya, S.Banerjee, and J. P. Banerjee, “Effect of Junction Temperature on the Large-Signal Properties of a 94 GHz Silicon Based Double-Drift Region Impact Avalanche Transit Time Device,” Journal of Semiconductors, vol. 34, pp. 024001-12, 2013.
[21] J. F. Luy, A. Casel, W. Behr, and E. Kasper, “A 90-GHz double-drift IMPATT diode made with Si MBE,” IEEE Trans. Electron Devices, vol. 34, pp. 1084-1089, 1987.
[22] H. Pfleiderer, “Magnetodiode model,” Solid-State Electron., vol.15, pp. 335-353, 1972.
[23] A. Acharyya, J. Goswami, S.Banerjee, and J. P. Banerjee, “Estimation of Most Favorable Optical Window Position Subject to Achieve Finest Optical Control of Lateral DDR IMPATT Diode Designed to Operate at W-Band,” Radioengineering, vol.23, pp. 739-753, 2014.
[24] H. P. Baltes, L. Andor, A. Nathan, and H. G. Schmidt-Weinmar, “Two-Dimensional Numerical Analysis of a Silicon Magnetic Field Sensor,” IEEE Transactions on Electron Devices, vol. 31, pp. 996-999, 1984.
[25] M. Kurata, “Numerical Analysis for Semiconductor Devices,” Lexington MA: Heath, 1982.
[26] H. H. Heimeier, “A two-dimensional numerical analysis of a silicon n-p-n transistor,” IEEE Trans. Electron Devices, vol.20, pp. 708-714, 1973.
[27] M. Rudan, and R. Guerrieri, “Relevant problems in the numerical simulation of semiconductor devices using the finite element method,” in Numerical Analysis of Semiconductor Devices and Integrated Circuits, J. J. H. Miller, Ed. Dublin: Boole, 1983.
[28] H. A. Haus, H. Statz, and R. A. Pucel, “Optimum noise measure of IMPATT diode,” IEEE Trans. on MTT, vol. 19, pp. 801-813, 1971.
[29] T. Semba, T. Yamamoto, Y. Murata, M. Abe, S. Koda, Y. Iwasaki, Y. Takabayashi, and T. Kaneyasu, “Design and Manufacture of Superconducting Magnet for the Wiggler in Saga-LS,” Proceedings of IPAC’10, Kyoto, Japan, pp. 358-360, 2010.
[30] A. Acharyya, S.Banerjee, and J. P. Banerjee, “Influence of Skin Effect on the Series Resistance of Millimeter-Wave of IMPATT Devices,” Journal Computational Electronics, vol. 12, pp. 511-525, 2013.
[31] A. Acharyya, S.Banerjee, and J. P. Banerjee, “A Proposed Simulation Technique to Study the Series Resistance and Related Millimeter-Wave Properties of Ka-Band Si IMPATTs from the Electric Field Snap-Shots,” International Journal of Microwave and Wireless Technologies, vol. 5, 91-100, 2013.
[32] T. A. Midford, and R. L. Bernick, “Millimeter Wave CW IMPATT diodes and Oscillators,” IEEE Trans. Microwave Theory Tech., vol. 27, pp. 483-492, 1979.