Search results for: linear prediction analysis
9095 On Uniqueness and Continuous Dependence in the Theory of Micropolar Thermoelastic Mixtures
Authors: Catalin Gales, Ionel Dumitrel Ghiba
Abstract:
This paper studies questions of continuous data dependence and uniqueness for solutions of initial boundary value problems in linear micropolar thermoelastic mixtures. Logarithmic convexity arguments are used to establish results with no definiteness assumptions upon the internal energy.
Keywords: Cellular materials, continuous dependence, micro polar mixtures, uniqueness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18359094 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control
Authors: Vivekanandan C., Prabhakar .R., Prema D.
Abstract:
This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presentedKeywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20159093 The Relationship between Land Use Factors and Feeling of Happiness at the Neighbourhood Level
Authors: M. Moeinaddini, Z. Asadi-Shekari, Z. Sultan, M. Zaly Shah
Abstract:
Happiness can be related to everything that can provide a feeling of satisfaction or pleasure. This study tries to consider the relationship between land use factors and feeling of happiness at the neighbourhood level. Land use variables (beautiful and attractive neighbourhood design, availability and quality of shopping centres, sufficient recreational spaces and facilities, and sufficient daily service centres) are used as independent variables and the happiness score is used as the dependent variable in this study. In addition to the land use variables, socio-economic factors (gender, race, marital status, employment status, education, and income) are also considered as independent variables. This study uses the Oxford happiness questionnaire to estimate happiness score of more than 300 people living in six neighbourhoods. The neighbourhoods are selected randomly from Skudai neighbourhoods in Johor, Malaysia. The land use data were obtained by adding related questions to the Oxford happiness questionnaire. The strength of the relationship in this study is found using generalised linear modelling (GLM). The findings of this research indicate that increase in happiness feeling is correlated with an increasing income, more beautiful and attractive neighbourhood design, sufficient shopping centres, recreational spaces, and daily service centres. The results show that all land use factors in this study have significant relationship with happiness but only income, among socio-economic factors, can affect happiness significantly. Therefore, land use factors can affect happiness in Skudai more than socio-economic factors.
Keywords: Neighbourhood land use, neighbourhood design, happiness, socio-economic factors, generalised linear modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7259092 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions
Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani
Abstract:
Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11999091 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators
Authors: Fethi Soltani, Adel Almarashi, Idir Mechai
Abstract:
Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.Keywords: Fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15359090 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure
Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin
Abstract:
Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.
Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22329089 Statistical Texture Analysis
Authors: G. N. Srinivasan, G. Shobha
Abstract:
This paper presents an overview of the methodologies and algorithms for statistical texture analysis of 2D images. Methods for digital-image texture analysis are reviewed based on available literature and research work either carried out or supervised by the authors.Keywords: Image Texture, Texture Analysis, Statistical Approaches, Structural approaches, spectral approaches, Morphological approaches, Fractals, Fourier Transforms, Gabor Filters, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9609088 Hidden Markov Model for the Simulation Study of Neural States and Intentionality
Authors: R. B. Mishra
Abstract:
Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.Keywords: BDI, HMM, neural activation, optimal states, working conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8769087 The Documentary Analysis of Meta-Analysis Research in Violence of Media
Authors: Proud Arunrangsiwed
Abstract:
The part of “future direction” in the findings of meta-analysis could provide the great direction to conduct the future studies. This study, “The Documentary Analysis of Meta-Analysis Research in Violence of Media” would conclude “future directions” out of 10 meta-analysis papers. The purposes of this research are to find an appropriate research design or an appropriate methodology for the future research related to the topic, “violence of media”. Further research needs to explore by longitudinal and experimental design, and also needs to have a careful consideration about age effects, time spent effects, enjoyment effects and ordinary lifestyle of each media consumer.
Keywords: Aggressive, future direction, meta-analysis, media, violence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27129086 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve
Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk
Abstract:
The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.
Keywords: Electro Hydraulic Servo Valve, fluid power control system, system stiffness, static and dynamic performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6929085 The Association between the Firm Characteristics and Corporate Mandatory Disclosure the Case of Greece
Authors: Despina Galani, Anastasios Alexandridis, Antonios Stavropoulos
Abstract:
The main thrust of this paper is to assess the level of disclosure in the annual reports of non-financial Greek firms and to empirically investigate the hypothesized impact of several firm characteristics on the extent of mandatory disclosure. A disclosure checklist consisting of 100 mandatory items was developed to assess the level of disclosure in the 2009 annual reports of 43 Greek companies listed at the Athens stock exchange. The association between the level of disclosure and some firm characteristics was examined using multiple linear regression analysis. The study reveals that Greek companies on general have responded adequately to the mandatory disclosure requirements of the regulatory bodies. The findings also indicate that firm size was significant positively associated with the level of disclosure. The remaining variables such as age, profitability, liquidity, and board composition were found to be insignificant in explaining the variation of mandatory disclosures. The outcome of this study is undoubtedly of great concern to the investment community at large to assist in evaluating the extent of mandatory disclosure by Greek firms and explaining the variation of disclosure in light of firm-specific characteristics.
Keywords: Mandatory disclosure, Annual report, Disclosure index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39979084 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Provinces
Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari
Abstract:
The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.
Keywords: Climate change, extreme precipitation, greenhouse gas, trend analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 559083 A Study on the Relation of Corporate Governance and Pricing for Initial Public Offerings
Authors: Chei-Chang Chiou, Sen-Wei Wang, Yu-Min Wang
Abstract:
The purpose of this study is to investigate the relationship between corporate governance and pricing for initial public offerings (IPOs). Empirical result finds that the prediction of pricing of IPOs with corporate governance added can have a rather higher degree of predicting accuracy than that of non governance added during the training and testing samples. Therefore, it can be observed that corporate governance mechanism can affect the pricing of IPOsKeywords: Artificial neural networks, corporate governance, initial public offerings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18199082 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures
Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu
Abstract:
The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.
Keywords: Electron beam irradiation, EPDM rubber, crosslinking density, gel fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10469081 Proposal for a Ultra Low Voltage NAND gate to withstand Power Analysis Attacks
Authors: Omid Mirmotahari, Yngvar Berg
Abstract:
In this paper we promote the Ultra Low Voltage (ULV) NAND gate to replace either partly or entirely the encryption block of a design to withstand power analysis attack.
Keywords: Differential Power Analysis (DPA), Low Voltage (LV), Ultra Low Voltage (ULV), Floating-Gate (FG), supply current analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19629080 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.
Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22739079 A Study on the Differential Diagnostic Model for Newborn Hearing Loss Screening
Authors: Chun-Lang Chang
Abstract:
According to the statistics, the prevalence of congenital hearing loss in Taiwan is approximately six thousandths; furthermore, one thousandths of infants have severe hearing impairment. Hearing ability during infancy has significant impact in the development of children-s oral expressions, language maturity, cognitive performance, education ability and social behaviors in the future. Although most children born with hearing impairment have sensorineural hearing loss, almost every child more or less still retains some residual hearing. If provided with a hearing aid or cochlear implant (a bionic ear) timely in addition to hearing speech training, even severely hearing-impaired children can still learn to talk. On the other hand, those who failed to be diagnosed and thus unable to begin hearing and speech rehabilitations on a timely manner might lose an important opportunity to live a complete and healthy life. Eventually, the lack of hearing and speaking ability will affect the development of both mental and physical functions, intelligence, and social adaptability. Not only will this problem result in an irreparable regret to the hearing-impaired child for the life time, but also create a heavy burden for the family and society. Therefore, it is necessary to establish a set of computer-assisted predictive model that can accurately detect and help diagnose newborn hearing loss so that early interventions can be provided timely to eliminate waste of medical resources. This study uses information from the neonatal database of the case hospital as the subjects, adopting two different analysis methods of using support vector machine (SVM) for model predictions and using logistic regression to conduct factor screening prior to model predictions in SVM to examine the results. The results indicate that prediction accuracy is as high as 96.43% when the factors are screened and selected through logistic regression. Hence, the model constructed in this study will have real help in clinical diagnosis for the physicians and actually beneficial to the early interventions of newborn hearing impairment.
Keywords: Data mining, Hearing impairment, Logistic regression analysis, Support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18099078 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground
Authors: Bhim Kumar Dahal
Abstract:
Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies. Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication. And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.
Keywords: Embankment, ground improvement, modelling, model prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9679077 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach
Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik
Abstract:
Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.Keywords: Center of pressure (CoP), a method of developed statokinesigram trajectory (MDST), a model of postural system behavior, retroreflective marker data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7699076 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.
Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5659075 An Accurate Prediction of Surface Temperature History in a Supersonic Flight
Authors: A. M. Tahsini, S. A. Hosseini
Abstract:
In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.
Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17139074 ZMP Based Reference Generation for Biped Walking Robots
Authors: Kemalettin Erbatur, Özer Koca, Evrim Taşkıran, Metin Yılmaz, Utku Seven
Abstract:
Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.Keywords: Biped robot, Linear Inverted Pendulum Model, Zero Moment Point, Fourier series approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16429073 Assessing the Actual Status and Farmer’s Attitude towards Agroforestry in Chiniot, Pakistan
Authors: M. F. Nawaz, S. Gul, T. H. Farooq, M. T. Siddiqui, M. Asif, I. Ahmad, N. K. Niazi
Abstract:
In Pakistan, major demands of fuel wood and timber wood are fulfilled by agroforestry. However, the information regarding economic significance of agroforestry and its productivity in Pakistan is still insufficient and unreliable. Survey of field conditions to examine the agroforestry status at local level helps us to know the future trends and to formulate the policies for sustainable wood supply. The objectives of this research were to examine the actual status and potential of agroforestry and to point out the barriers that are faced by farmers in the adoption of agroforestry. Research was carried out in Chiniot district, Pakistan because it is the famous city for furniture industry that is largely dependent on farm trees. A detailed survey of district Chiniot was carried out from 150 randomly selected farmer respondents using multi-objective oriented and pre-tested questionnaire. It was found that linear tree planting method was more adopted (45%) as compared to linear + interplanting (42%) and/or compact planting (12.6%). Chi-square values at P-value <0.5 showed that age (11.35) and education (17.09) were two more important factors in the quick adoption of agroforestry as compared to land holdings (P-value of 0.7). The major reason of agroforestry adoption was to obtain income, fodder and fuelwood. The most dominant species in farmlands was shisham (Dalbergia sissoo) but since last five years, mostly farmers were growing Sufeida (Eucalyptus camaldulensis), kikar (Acacia nilotica) and popular (Populus deltoides) on their fields due to “Shisham die-back” problem. It was found that agro-forestry can be increased by providing good quality planting material to farmers and improving wood markets.Keywords: Agroforestry, trees, services, agriculture, farmers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17469072 A Survey of the Applications of Sentiment Analysis
Authors: Pingping Lin, Xudong Luo
Abstract:
Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future.Keywords: Natural language processing, sentiment analysis, application, online comments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9669071 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially the fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, ma-chine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.
Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24389070 ψ-exponential Stability for Non-linear Impulsive Differential Equations
Authors: Bhanu Gupta, Sanjay K. Srivastava
Abstract:
In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39569069 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5399068 Skew Cyclic Codes over Fq+uFq+…+uk-1Fq
Abstract:
This paper studies a special class of linear codes, called skew cyclic codes, over the ring R= Fq+uFq+…+uk-1Fq, where q is a prime power. A Gray map ɸ from R to Fq and a Gray map ɸ' from Rn to Fnq are defined, as well as an automorphism Θ over R. It is proved that the images of skew cyclic codes over R under map ɸ' and Θ are cyclic codes over Fq, and they still keep the dual relation.
Keywords: Skew cyclic code, gray map, automophism, cyclic code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11009067 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32419066 The Adsorption of SDS on Ferro-Precipitates
Authors: R.Marsalek
Abstract:
This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.Keywords: ferro-precipitate, adsorption, SDS, zeta potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918