Search results for: lifelong learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2054

Search results for: lifelong learning

554 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
553 Creating a Virtual Perception for Upper Limb Rehabilitation

Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee

Abstract:

This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.

Keywords: Physical rehabilitation, mirror neuron, virtual reality, stroke therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
552 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods

Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis

Abstract:

An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.

Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
551 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
550 Discovery of Fuzzy Censored Production Rules from Large Set of Discovered Fuzzy if then Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Censored Production Rule is an extension of standard production rule, which is concerned with problems of reasoning with incomplete information, subject to resource constraints and problem of reasoning efficiently with exceptions. A CPR has a form: IF A (Condition) THEN B (Action) UNLESS C (Censor), Where C is the exception condition. Fuzzy CPR are obtained by augmenting ordinary fuzzy production rule “If X is A then Y is B with an exception condition and are written in the form “If X is A then Y is B Unless Z is C. Such rules are employed in situation in which the fuzzy conditional statement “If X is A then Y is B" holds frequently and the exception condition “Z is C" holds rarely. Thus “If X is A then Y is B" part of the fuzzy CPR express important information while the unless part acts only as a switch that changes the polarity of “Y is B" to “Y is not B" when the assertion “Z is C" holds. The proposed approach is an attempt to discover fuzzy censored production rules from set of discovered fuzzy if then rules in the form: A(X) ÔçÆ B(Y) || C(Z).

Keywords: Uncertainty Quantification, Fuzzy if then rules, Fuzzy Censored Production Rules, Learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
549 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks

Authors: Oguz Ustun, Erdal Bekiroglu

Abstract:

In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM

Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
548 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism

Authors: D. Sumathi, P. Poongodi

Abstract:

Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.

Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
547 Teaching Light Polarization by Putting Art and Physics Together

Authors: Fabrizio Logiurato

Abstract:

Light Polarization has many technological applications, and its discovery was crucial to reveal the transverse nature of the electromagnetic waves. However, despite its fundamental and practical importance, in high school, this property of light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to perform many brilliant experiments with low cost materials. Moreover, the treatment of this matter lends very well to an interdisciplinary approach between art, biology and technology, which usually makes things more interesting to students. For these reasons, we have developed, and in this work, we introduce a laboratory on light polarization for high school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing filters. Pupils are very fascinated and drawn into by what they observe. The colourful images remind them of those ones of abstract painting or alien landscapes. With this multidisciplinary teaching method, students are more engaged and participative, and also, the learning process of the respective physics concepts is more effective.

Keywords: Light polarization, optical activity, multidisciplinary education, science and art.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
546 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module

Authors: D. Hassell, D. De Focatiis

Abstract:

This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.

Keywords: Engineering education, student differences, student learning, web-based coursework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
545 Parallel Text Processing: Alignment of Indonesian to Javanese Language

Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy

Abstract:

Parallel text alignment is proposed as a way of aligning bahasa Indonesia to words in Javanese. Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).

Keywords: Parallel text alignment, phrase pair combination, edit distance coefficient, Javanese-Indonesian language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
544 Reciprocal Interferences in Bilingual English-Igbo Speaking Society: The Implications in Language Pedagogy

Authors: Ugwu Elias Ikechukwu

Abstract:

Discussions on bilingualism have always dwelt on how the mother tongue interferes with the target language. This interference is considered a serious problem in second language learning. Usually, the interference has been phonological. But the objective of this research is to explore how the target language interferes with the mother tongue. In the case of the Igbo language, it interferes with English mostly at the phonological level while English interferes with Igbo at the realm of vocabulary. The result is a new language \"Engligbo\" which is a hybrid of English and Igbo. The Igbo language spoken by about 25 million people is one of the three most prominent languages in Nigeria. This paper discusses the phenomenal Engligbo, and other implications for Igbo learners of English. The method of analysis is descriptive. A number of recommendations were made that would help teachers handle problems arising from such mutual interferences.

Keywords: Bilingualism, Implications, Language Pedagogy, Reciprocal Interferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5662
543 Psychometric Examination of the QUEST-25: An Online Assessment of Intellectual Curiosity and Scientific Epistemology

Authors: Matthew J. Zagumny

Abstract:

The current study reports an examination of the QUEST-25 (Q-Assessment of Undergraduate Epistemology and Scientific Thinking) online version for assessing the dispositional attitudes toward scientific thinking and intellectual curiosity among undergraduate students. The QUEST-25 consists of scientific thinking (SIQ-25) and intellectual curiosity (ICIQ-25), which were correlated in hypothesized directions with the Religious Commitment Inventory, Curiosity and Exploration Inventory, Belief in Science scale, and measures of academic self-efficacy. Additionally, concurrent validity was established by the resulting significant differences between those identifying the centrality of religious belief in their lives and those who do not self-identify as being guided daily by religious beliefs. This study demonstrates the utility of the QUEST-25 for research, evaluation, and theory development.

Keywords: Guided-inquiry learning, intellectual curiosity, psychometric assessment, scientific thinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
542 Application of Tacit Knowledge from Professional Packaging Designer for Teaching Packaging Design

Authors: Somsri Binraman, Boonliang Kaewnapan, Krittika Tanprasert

Abstract:

In the package design industry, there are a lot of tacit knowledge resided within each designer. The objectives are to capture them and compile it to be used as a teaching resource and to create a video clip of package design process as well as to evaluate its quality and learning effectiveness. Interview were used as a technique for capturing knowledge in brand design concept, differentiation, recognition, rank of recognition factor, consumer survey, knowledge about marketing, research, graphic design, the effect of color, and law and regulation. Video clip about package design were created. The clip consisted of both the speech and clip of actual process. The quality of the video in term of media was ranked as good while the content was ranked as excellent. The students- score on post-test was significantly greater than that of pretest (p>0.001).

Keywords: Tacit knowledge, interview, video, packaging, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
541 Development and Assessment of the Competence Creativity Applied to Technical Drawing

Authors: Maria J. Garcia-Garcia, Concepcion Gonzalez-Garcia, Gabriel A. Dorado, Luis J. Fernandez

Abstract:

The results obtained after incorporating the competence “creativity" to the subject Technical Drawing of the first course of the Degree in Forestry, Technical University of Madrid, are presented in this study.At first, learning activities which could serve two functions at the same time -developing students- creativity and developing other specific competences of the subject- were considered. Besides, changes in the assessment procedure were made and a method which analyzes two aspects of the assessment of the competence creativity was established. On the one hand, the products are evaluated by analyzing the outcomes obtained by students in the essays suggested and by establishing a parameter to assess the creativity expressed in those essays. On the other, an assessment of the student is directly carried out through a psychometric test which has been previously chosen by the team.Moreover, these results can be applied to similar or could be of general application.

Keywords: assessment competence, assessment creativity, creativity, generic competences

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
540 Playing Games with Genetic Algorithms: Application on Price-QoS Competition in Telecommunications Market

Authors: M’hamed Outanoute, Mohamed Baslam, Belaid Bouikhalene

Abstract:

The customers use the best compromise criterion between price and quality of service (QoS) to select or change their Service Provider (SP). The SPs share the same market and are competing to attract more customers to gain more profit. Due to the divergence of SPs interests, we believe that this situation is a non-cooperative game of price and QoS. The game converges to an equilibrium position known Nash Equilibrium (NE). In this work, we formulate a game theoretic framework for the dynamical behaviors of SPs. We use Genetic Algorithms (GAs) to find the price and QoS strategies that maximize the profit for each SP and illustrate the corresponding strategy in NE. In order to quantify how this NE point is performant, we perform a detailed analysis of the price of anarchy induced by the NE solution. Finally, we provide an extensive numerical study to point out the importance of considering price and QoS as a joint decision parameter.

Keywords: Pricing, QoS, Market share game, Genetic algorithms, Nash equilibrium, Learning, Price of anarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
539 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study

Authors: Chee Peng Lim, Wei Yee Goh

Abstract:

In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.

Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
538 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
537 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
536 Motivational Factors Influencing Women’s Entrepreneurship: A Case Study of Female Entrepreneurship in South Africa

Authors: Natanya Meyer, Johann Landsberg

Abstract:

Globally, many women are still disadvantaged when it comes to business opportunities. Entrepreneurship development programs, specifically designed to assist women entrepreneurs, are assisting in solving this problem to a certain extent. The purpose of this study is to identify the factors that motivate females to start their own business. Females, from three different groups (2013, 2014 and 2015), who were all enrolled in a short learning program specifically designed for women in early start-up stage or intending to start a business, were asked what motivated them to start a business. The results indicated that, from all three groups, the majority of the women wanted to start a business to be independent and have freedom and to add towards a social goal. The results further indicated that in general, women would enter into entrepreneurship activity due to pull factors rather than push factors.

Keywords: Entrepreneurship programs, South Africa, female entrepreneurship, motivational factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3924
535 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
534 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: Classification, SOFM, neural network, RGB images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
533 An Artificial Immune System for a Multi Agent Robotics System

Authors: Chingtham Tejbanta Singh, Shivashankar B. Nair

Abstract:

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.

Keywords: Adaptive, AIS, Behavior Arbitration, ClonalSelection, Immune System, Innate, Robot, Self Healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
532 Evolutionary Program Based Approach for Manipulator Grasping Color Objects

Authors: Y. Harold Robinson, M. Rajaram, Honey Raju

Abstract:

Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.

Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
531 An Electronic and Performance Test for the Applicants to Faculty of Education for Early Childhood in Egypt for Measuring the Skills of Teacher Students

Authors: Ahmed Amin Mousa, Gehan Azam

Abstract:

The current study presents an electronic test to measure teaching skills. This test is a part of the admission system of the Faculty of Education for Early Childhood, Cairo University. The test has been prepared to evaluate university students who apply for admission the Faculty. It measures some social and physiological skills which are important for successful teachers, such as emotional adjustment and problem solving; moreover, the extent of their love for children and their capability to interact with them. The test has been approved by 13 experts. Finally, it has been introduced to 1,100 students during the admission system of the academic year 2016/2017. The results showed that most of the applicants have an auditory learning style. In addition, 97% of them have the minimum requirement skills for teaching children.

Keywords: Electronic test, early childhood, skills, teacher student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
530 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
529 Renewable Energies in Spain and Portugal: A Strategic Challenge for the Sustainability

Authors: María Teresa García-Álvarez, Isabel Soares, Rosa María Mariz-Pérez

Abstract:

Directive 2009/28/CE establishes, as obligatory objective, a share of renewable energies on energetic consumption of 20%, in European Union, in 2020 However, such European normative gives freedom to member states in the selection of the renewable promotion mechanism that allows them to obtain that objective. In this paper, we analyze the main characteristics of the promotion mechanisms of renewable energy used in the countries that shape the Electricity Iberian Market (Spain and Portugal) and the results in employment. The importance of these countries is given by the great increasing of the renewable energies which suppose a share higher than 30% of the overall generation in 2010. Therefore, this research paper can serve as the basis for the learning of other countries with regard to the main advantages that entail the use of a feed-in tariff system.

Keywords: Employment, Energy policy, Professional profiles, Renewable energies, Professional profiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
528 Exploring the Nature and Meaning of Theory in the Field of Neuroeducation Studies

Authors: Ali Nouri

Abstract:

Neuroeducation is one of the most exciting research fields which is continually evolving. However, there is a need to develop its theoretical bases in connection to practice. The present paper is a starting attempt in this regard to provide a space from which to think about neuroeducational theory and invoke more investigation in this area. Accordingly, a comprehensive theory of neuroeducation could be defined as grouping or clustering of concepts and propositions that describe and explain the nature of human learning to provide valid interpretations and implications useful for educational practice in relation to philosophical aspects or values. Whereas it should be originated from the philosophical foundations of the field and explain its normative significance, it needs to be testable in terms of rigorous evidence to fundamentally advance contemporary educational policy and practice. There is thus pragmatically a need to include a course on neuroeducational theory into the curriculum of the field. In addition, there is a need to articulate and disseminate considerable discussion over the subject within professional journals and academic societies.

Keywords: Neuroeducation studies, neuroeducational theory, theory building, neuroeducation research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
527 Reference Architecture for Intelligent Enterprise Solutions

Authors: Shankar Kambhampaty, Harish Rohan Kambhampaty

Abstract:

Data in IT systems in enterprises have been growing at phenomenal pace. This has provided opportunities to run analytics to gather intelligence on key business parameters that enable them to provide better products and services to customers. While there are several Artificial Intelligence/Machine Learning (AI/ML) and Business Intelligence (BI) tools and technologies available in marketplace to run analytics, there is a need for an integrated view when developing intelligent solutions in enterprises. This paper progressively elaborates a reference model for enterprise solutions, builds an integrated view of data, information and intelligence components and presents a reference architecture for intelligent enterprise solutions. Finally, it applies the reference architecture to an insurance organization. The reference architecture is the outcome of experience and insights gathered from developing intelligent solutions for several organizations.

Keywords: Architecture, model, intelligence, artificial intelligence, business intelligence, AI, BI, ML, analytics, enterprise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
526 Measuring Teachers- Beliefs about Mathematics: A Fuzzy Set Approach

Authors: M.A. Lazim, M.T.Abu Osman

Abstract:

This paper deals with the application of a fuzzy set in measuring teachers- beliefs about mathematics. The vagueness of beliefs was transformed into standard mathematical values using a fuzzy preferences model. The study employed a fuzzy approach questionnaire which consists of six attributes for measuring mathematics teachers- beliefs about mathematics. The fuzzy conjoint analysis approach based on fuzzy set theory was used to analyze the data from twenty three mathematics teachers from four secondary schools in Terengganu, Malaysia. Teachers- beliefs were recorded in form of degrees of similarity and its levels of agreement. The attribute 'Drills and practice is one of the best ways of learning mathematics' scored the highest degree of similarity at 0. 79860 with level of 'strongly agree'. The results showed that the teachers- beliefs about mathematics were varied. This is shown by different levels of agreement and degrees of similarity of the measured attributes.

Keywords: belief, membership function, degree of similarity, conjoint analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
525 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

The paper discusses the main aspects involved in the development of a supply chain management system using the developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.

Keywords: Demand forecasting, machine learning, risk management, supply chain design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205