Search results for: Photovoltaic power generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3836

Search results for: Photovoltaic power generation

2336 Reversible, Embedded and Highly Scalable Image Compression System

Authors: Federico Pérez González, Iñaki Goirizelaia Ordorika, Pedro Iriondo Bengoa

Abstract:

In this work a new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuous-tone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different importance levels from which the bit stream will be generated. The subcomponents of each importance level are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several improvement levels.

Keywords: Image compression, wavelet transform, highly scalable, reversible transform, embedded, subcomponents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
2335 Pattern Matching Based on Regular Tree Grammars

Authors: Riad S. Jabri

Abstract:

Pattern matching based on regular tree grammars have been widely used in many areas of computer science. In this paper, we propose a pattern matcher within the framework of code generation, based on a generic and a formalized approach. According to this approach, parsers for regular tree grammars are adapted to a general pattern matching solution, rather than adapting the pattern matching according to their parsing behavior. Hence, we first formalize the construction of the pattern matches respective to input trees drawn from a regular tree grammar in a form of the so-called match trees. Then, we adopt a recently developed generic parser and tightly couple its parsing behavior with such construction. In addition to its generality, the resulting pattern matcher is characterized by its soundness and efficient implementation. This is demonstrated by the proposed theory and by the derived algorithms for its implementation. A comparison with similar and well-known approaches, such as the ones based on tree automata and LR parsers, has shown that our pattern matcher can be applied to a broader class of grammars, and achieves better approximation of pattern matches in one pass. Furthermore, its use as a machine code selector is characterized by a minimized overhead, due to the balanced distribution of the cost computations into static ones, during parser generation time, and into dynamic ones, during parsing time.

Keywords: Bottom-up automata, Code selection, Pattern matching, Regular tree grammars, Match trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
2334 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: Ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
2333 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM

Authors: Gaddafi S. Shehu, T. Yalcinoz, Abdullahi B. Kunya

Abstract:

Multilevel inverters such as flying capacitor, diodeclamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.

Keywords: Cascaded H-bridge Multilevel Inverter, Power Quality, Selective Harmonic Elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5077
2332 Practical Techniques of Improving State Estimator Solution

Authors: Kiamran Radjabli

Abstract:

State Estimator became an intrinsic part of Energy Management Systems (EMS). The SCADA measurements received from the field are processed by the State Estimator in order to accurately determine the actual operating state of the power systems and provide that information to other real-time network applications. All EMS vendors offer a State Estimator functionality in their baseline products. However, setting up and ensuring that State Estimator consistently produces a reliable solution often consumes a substantial engineering effort. This paper provides generic recommendations and describes a simple practical approach to efficient tuning of State Estimator, based on the working experience with major EMS software platforms and consulting projects in many electrical utilities of the USA.

Keywords: Convergence, monitoring, performance, state estimator, troubleshooting, tuning, power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
2331 Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations

Authors: Yuri A. Gruber, Matheus Rosendo, Ulisses G. A. Casemiro, Klaus de Geus, Rafael T. Bee

Abstract:

Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering.

Keywords: Game engine, rolling spheres method, substation protection, UE4, Unreal® Engine 4.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
2330 Simulation Based Performance Comparison of Different Control Methods of ZSI Feeding Industrial Drives

Authors: Parag Nihawan, Ravinder Singh Bhatia, Dinesh Kumar Jain

Abstract:

Industrial drives are source of serious power quality problems. In this, two typical industrial drives have been dealt with, namely, FOC induction motor drives and DTC induction motor drive. The Z-source inverter is an emerging topology of power electronic converters which is capable of buck boost characteristics. The performances of different control methods based Z-source inverters feeding these industrial drives have been investigated, in this work. The test systems have been modeled and simulated in MATLAB/SIMULINK. The results obtained after carrying out these simulations have been used to draw the conclusions.

Keywords: Z-Source Inverter, total harmonic distortion, direct torque control, field orientation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
2329 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell

Authors: Nawang Chhunid, Gagnesh Kumar

Abstract:

On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.

Keywords: DRAM cell, read access time, tanner EDA tool write access time and retention time, average power dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
2328 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali

Abstract:

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several subnetworks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

Keywords: Wireless sensor networks, routing protocols, ad hoc topology, cluster, sub-network, WSN design requirements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
2327 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case

Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa Rodríguez

Abstract:

Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67%. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85%, 59%, 87%, and 29%, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09% for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determines the sustainability of the process.

Keywords: Exergy analysis, Life Cycle Assessment, LCA, renewability, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
2326 An Eigen-Approach for Estimating the Direction-of Arrival of Unknown Number of Signals

Authors: Dia I. Abu-Al-Nadi, M. J. Mismar, T. H. Ismail

Abstract:

A technique for estimating the direction-of-arrival (DOA) of unknown number of source signals is presented using the eigen-approach. The eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix yields the minimum output power of the array. Also, the array polynomial with this eigenvector possesses roots on the unit circle. Therefore, the pseudo-spectrum is found by perturbing the phases of the roots one by one and calculating the corresponding array output power. The results indicate that the DOAs and the number of source signals are estimated accurately in the presence of a wide range of input noise levels.

Keywords: Array signal processing, direction-of-arrival, antenna arrays, eigenvalues, eigenvectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
2325 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer

Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal

Abstract:

Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.

Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
2324 Optimization of Multifunctional Battery Structures for Mars

Authors: James A Foster, Guglielmo S Aglietti

Abstract:

Multifunctional structures are a potentially disruptive technology that allows for significant mass savings on spacecraft. The specific concept addressed herein is that of a multifunctional power structure. In this paper, a parametric optimisation of the design of such a structure that uses commercially available battery cells is presented. Using numerical modelling, it was found that there exists several trade-offs aboutthe conflict between the capacity of the panel and its mechanical properties. It was found that there is no universal optimal location for the cells. Placing them close to the mechanical interfaces increases loading in the mechanically weak cells whereas placing them at the centre of the panel increases the stress inthe panel and reduces the stiffness of the structure.

Keywords: Design Optimization, Multifunctional Structures, Power Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
2323 Mitigation of Flicker using STATCOM with Three-Level 12-pulse Voltage Source Inverter

Authors: Ali Z a'fari

Abstract:

Voltage flicker is a disturbance in electrical power systems. The reason for this disturbance is mainly the large nonlinear loads such as electric arc furnaces. Synchronous static compensator (STATCOM) is considered as a proper technique to mitigate the voltage flicker. Application of more suitable and precise power electronic converter leads to a more precise performance of the compensator. In this paper a three-level 12-pulse voltage source inverter (VSI) with a 12-terminal transformer connected to the ac system is studied and the obtained results are compared with the performance of a STATCOM using a simple two-level VSI and an optimal and more precise performance of the proposed scheme is achieved.

Keywords: Flicker mitigation, STATCOM, Inverter, 12-pulse, 3- level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
2322 Comparison of the Effects of Continuous Flow Microwave Pre-treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant

Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin

Abstract:

Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.

Keywords: Anaerobic digestion, biogas, microwave pre-treatment, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
2321 A PN Sequence Generator based on Residue Arithmetic for Multi-User DS-CDMA Applications

Authors: Chithra R, Pallab Maji, Sarat Kumar Patra, Girija Sankar Rath

Abstract:

The successful use of CDMA technology is based on the construction of large families of encoding sequences with good correlation properties. This paper discusses PN sequence generation based on Residue Arithmetic with an effort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. All spreading codes with residual number system proposed earlier did not consider external interferences, multipath propagation, Doppler effect etc. In literature the use of residual arithmetic in DS-CDMA was restricted to encoding of already spread sequence; where spreading of sequence is done by some existing techniques. The novelty of this paper is the use of residual number system in generation of the PN sequences which is used to spread the message signal. The significance of cross-correlation factor in alleviating multi-access interference is also discussed. The RNS based PN sequence has superior performance than most of the existing codes that are widely used in DS-CDMA applications. Simulation results suggest that the performance of the proposed system is superior to many existing systems.

Keywords: Direct-Sequence Code Division Multiple Access (DSCDMA), Multiple-Access Interference (MAI), PN Sequence, Residue Number System (RNS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
2320 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices

Authors: S. Jadid, S. Jalilzadeh

Abstract:

In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.

Keywords: composite indices, transient stability, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
2319 An Investigation into the Isolation and Bandwidth Characteristics of X-Band Chireix PA Combiners

Authors: D. P. Clayton, E. A. Ball

Abstract:

This paper describes an investigation into the isolation characteristics and bandwidth performance of radio frequency (RF) combiners that are used as part of Chireix power amplifier (PA) architectures, designed for use in the X-Band range of frequencies. Combiner designs investigated are the typical Chireix and Wilkinson configurations which also include simulation of the Wilkinson using manufacturer’s data for the isolation resistor. Another simulation was the less common approach of using a Branchline coupler to form the combiner, as well as simulation results from adding an additional stage. This paper presents the findings of this investigation and compares the bandwidth performance and isolation characteristics to determine suitability.

Keywords: Bandwidth, Chireix, couplers, outphasing, power amplifiers, Wilkinson, X-Band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153
2318 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.

Keywords: Permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
2317 Design of Multiplier-free State-Space Digital Filters

Authors: Tamal Bose, Zhurun Zhang, Miloje Radenkovic, Ojas Chauhan

Abstract:

In this paper, a novel approach is presented for designing multiplier-free state-space digital filters. The multiplier-free design is obtained by finding power-of-2 coefficients and also quantizing the state variables to power-of-2 numbers. Expressions for the noise variance are derived for the quantized state vector and the output of the filter. A “structuretransformation matrix" is incorporated in these expressions. It is shown that quantization effects can be minimized by properly designing the structure-transformation matrix. Simulation results are very promising and illustrate the design algorithm.

Keywords: Digital filters, minimum noise, multiplier-free, quantization, state-space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
2316 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging

Authors: Ashraf Abuelhaija, Klaus Solbach

Abstract:

In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.

Keywords: EM coupling, Inter-element isolation, Magnetic resonance imaging (MRI), Parallel Transmit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
2315 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization

Authors: Hebberly Ahatlan

Abstract:

The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, Information Technology (IT) and Operational Technology (OT) convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.

Keywords: Digitalization, IT/OT convergence, semantic interoperability, TEIA alliance, VPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68
2314 A High-Speed and Low-Energy Ternary Content Addressable Memory Design Using Feedback in Match-Line Sense Amplifier

Authors: Syed Iftekhar Ali, M. S. Islam

Abstract:

In this paper we present an energy efficient match-line (ML) sensing scheme for high-speed ternary content-addressable memory (TCAM). The proposed scheme isolates the sensing unit of the sense amplifier from the large and variable ML capacitance. It employs feedback in the sense amplifier to successfully detect a match while keeping the ML voltage swing low. This reduced voltage swing results in large energy saving. Simulation performed using 130nm 1.2V CMOS logic shows at least 30% total energy saving in our scheme compared to popular current race (CR) scheme for similar search speed. In terms of speed, dynamic energy, peak power consumption and transistor count our scheme also shows better performance than mismatch-dependant (MD) power allocation technique which also employs feedback in the sense amplifier. Additionally, the implementation of our scheme is simpler than CR or MD scheme because of absence of analog control voltage and programmable delay circuit as have been used in those schemes.

Keywords: content-addressable memory, energy consumption, feedback, peak power, sensing scheme, sense amplifier, ternary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2313 Improvement of Stator Slot Structure based on Electro-Thermal Analysis in HV Generator

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetically and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.

Keywords: Electromagnetic field, field distribution, insulation, winding, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
2312 Applying Wavelet Entropy Principle in Fault Classification

Authors: S. El Safty, A. El-Zonkoly

Abstract:

The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropy of such decompositions is analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault.

Keywords: Fault classification, wavelet transform, waveletentropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
2311 Technical, Environmental, and Financial Assessment for the Optimal Sizing of a Run-of-River Small Hydropower Project: A Case Study in Colombia

Authors: David Calderón Villegas, Thomas Kalitzky

Abstract:

Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes’ cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an internal rate of return (IRR) 1.5 times higher than the discount rate. 

Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, financial analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
2310 Behavior of Droplets in Microfluidic System with T-Junction

Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud

Abstract:

Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.

Keywords: Microfluidic system, micro droplets generation, T-junction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
2309 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm

Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa

Abstract:

The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.

Keywords: Tag cloud, font distribution algorithm, frequency-based, content-based, power law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
2308 Budget and the Performance of Public Enterprises: A Study of Selected Public Enterprises in Nasarawa State Nigeria (2009-2013)

Authors: Dalhatu, Musa Yusha’u, Shuaibu Sidi Safiyanu, Haliru Musa Hussaini

Abstract:

This study examined budget and performance of public enterprises in Nasarawa State, Nigeria in a period of 2009-2013. The study utilized secondary sources of data obtained from four selected parastatals’ budget allocation and revenue generation for the period under review. The simple correlation coefficient was used to analyze the extent of the relationship between budget allocation and revenue generation of the parastatals. Findings revealed varying results. There was positive (0.21) and weak correlation between expenditure and revenue of Nasarawa Investment and Property Development Company (NIPDC). However, the study further revealed that there was strong and weak negative relationship in the revenue and expenditure of the following parastatals over the period under review. Viz: Nasarawa State Water Board, -0.27 (weak), Nasarawa State Broadcasting Service, -0.52 (Strong) and Nasarawa State College of Agriculture, -0.36 (weak). The study therefore, recommends that government should increase its investments in NIPDC to enhance efficiency and profitability. It also recommends that government should strengthen its fiscal responsibility, accountability and transparency in public parastatals.

Keywords: Allocation, Budget, Public Enterprises, Parastatals, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
2307 Energy-Efficient Sensing Concept for a Micromachined Yaw Rate Sensor

Authors: D. Oshinubi, M. Rocznik, K. Dostert

Abstract:

The need for micromechanical inertial sensors is increasing in future electronic stability control (ESC) and other positioning, navigation and guidance systems. Due to the rising density of sensors in automotive and consumer devices the goal is not only to get high performance, robustness and smaller package sizes, but also to optimize the energy management of the overall sensor system. This paper presents an evaluation concept for a surface micromachined yaw rate sensor. Within this evaluation concept an energy-efficient operation of the drive mode of the yaw rate sensor is enabled. The presented system concept can be realized within a power management subsystem.

Keywords: inertial sensors, micromachined gyros, gyro sensing concepts, power management, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485