Search results for: Dimension of Learning Styles
967 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis
Authors: V. Venkatachalam, S. Selvan
Abstract:
The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754966 Evaluation of Cast-in-Situ Pile Condition Using Pile Integrity Test
Authors: Mohammad I. Hossain, Omar F. Hamim
Abstract:
This paper presents a case study on a pile integrity test for assessing the integrity of piles as well as a physical dimension (e.g., cross-sectional area, length), continuity, and consistency of the pile materials. The recent boom in the socio-economic condition of Bangladesh has given rise to the building of high-rise commercial and residential infrastructures. The advantage of the pile integrity test lies in the fact that it is possible to get an approximate indication regarding the quality of the sub-structure before commencing the construction of the super-structure. This paper aims at providing a classification of cast-in-situ piles based on characteristic reflectograms obtained using the Sonic Integrity Testing program for the sub-soil condition of Narayanganj, Bangladesh. The piles have been classified as 'Pile Type-1', 'Pile Type-2', 'Pile Type-3', 'Pile type-4', 'Pile Type-5' or 'Pile Type-6' from the visual observations of reflections from the generated stress waves by striking the pile head with a handheld hammer. With respect to construction quality and integrity, piles have been further classified into three distinct categories, i.e., satisfactory, may be satisfactory, and unsatisfactory.
Keywords: Cast-in-situ piles, characteristic reflectograms, pile integrity test, sonic integrity testing program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683965 Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes
Authors: Parviz Alinezhad, Ali Sanati, Koorosh Naser Momtahen
Abstract:
Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.Keywords: Circular Pipes, Square Pipes, Shear Deformation, Reshaping Process, Numerical Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399964 A Kernel Based Rejection Method for Supervised Classification
Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy
Abstract:
In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452963 Exploiting Machine Learning Techniques for the Enhancement of Acceptance Sampling
Authors: Aikaterini Fountoulaki, Nikos Karacapilidis, Manolis Manatakis
Abstract:
This paper proposes an innovative methodology for Acceptance Sampling by Variables, which is a particular category of Statistical Quality Control dealing with the assurance of products quality. Our contribution lies in the exploitation of machine learning techniques to address the complexity and remedy the drawbacks of existing approaches. More specifically, the proposed methodology exploits Artificial Neural Networks (ANNs) to aid decision making about the acceptance or rejection of an inspected sample. For any type of inspection, ANNs are trained by data from corresponding tables of a standard-s sampling plan schemes. Once trained, ANNs can give closed-form solutions for any acceptance quality level and sample size, thus leading to an automation of the reading of the sampling plan tables, without any need of compromise with the values of the specific standard chosen each time. The proposed methodology provides enough flexibility to quality control engineers during the inspection of their samples, allowing the consideration of specific needs, while it also reduces the time and the cost required for these inspections. Its applicability and advantages are demonstrated through two numerical examples.Keywords: Acceptance Sampling, Neural Networks, Statistical Quality Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699962 Effects of External and Internal Focus of Attention in Motor Learning of Children Cerebral Palsy
Authors: Morteza Pourazar, Fatemeh Mirakhori, Fazlolah Bagherzadeh, Rasool Hemayattalab
Abstract:
The purpose of study was to examine the effects of external and internal focus of attention in the motor learning of children with cerebral palsy. The study involved 30 boys (7 to 12 years old) with CP type 1 who practiced throwing beanbags. The participants were randomly assigned to the internal focus, external focus, and control groups, and performed six blocks of 10-trial with attentional focus reminders during a practice phase and no reminders during retention and transfer tests. Analysis of variance (ANOVA) with repeated measures on the last factor was used. The results show that significant main effects were found for time and group. However, the interaction of time and group was not significant. Retention scores were significantly higher for the external focus group. The external focus group performed better than other groups; however, the internal focus and control groups’ performance did not differ. The study concluded that motor skills in Spastic Hemiparetic Cerebral Palsy (SHCP) children could be enhanced by external attention.
Keywords: Cerebral Palsy, external attention, internal attention, throwing task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561961 Evolving a Fuzzy Rule-Base for Image Segmentation
Abstract:
A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noiseKeywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965960 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures
Authors: Adriano Z. Zambom, Preethi Ravikumar
Abstract:
One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.Keywords: Additive models, local polynomial regression, residuals, mean square error, variable selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014959 A New Framework and a Model for Product Development with an Application in the Telecommunications Services Sector
Authors: Ghada A. El Khayat
Abstract:
This paper argues that a product development exercise involves in addition to the conventional stages, several decisions regarding other aspects. These aspects should be addressed simultaneously in order to develop a product that responds to the customer needs and that helps realize objectives of the stakeholders in terms of profitability, market share and the like. We present a framework that encompasses these different development dimensions. The framework shows that a product development methodology such as the Quality Function Deployment (QFD) is the basic tool which allows definition of the target specifications of a new product. Creativity is the first dimension that enables the development exercise to live and end successfully. A number of group processes need to be followed by the development team in order to ensure enough creativity and innovation. Secondly, packaging is considered to be an important extension of the product. Branding strategies, quality and standardization requirements, identification technologies, design technologies, production technologies and costing and pricing are also integral parts to the development exercise. These dimensions constitute the proposed framework. The paper also presents a mathematical model used to calculate the design targets based on the target costing principle. The framework is used to study a case of a new product development in the telecommunications services sector.Keywords: Product Development Framework, Quality FunctionDeployment, Mathematical Models, Telecommunications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563958 Preliminary Chaos Analyses of Explosion Earthquakes Followed by Harmonic Tremors at Semeru Volcano, East Java, Indonesia
Authors: Sukir Maryanto, Didik R. Santosa, Iyan Mulyana, Muhammad Hendrasto
Abstract:
Successive event of explosion earthquake and harmonic tremor recorded at Semeru volcano were analyzed to investigate the dynamical system regarding to their eruptive mechanism. The eruptive activity at Semeru volcano East Java, Indonesia is intermittent emission of ash and bombs with Strombolian style which occurred at interval of 15 to 45 minutes. The explosive eruptions accompanied by explosion earthquakes and followed by volcanic tremor which generated by continuous emission of volcanic ash. The spectral and Lyapunov exponent of successive event of explosion and harmonic tremor were analyzed. Peak frequencies of explosion earthquakes range 1.2 to 1.9 Hz and those of the harmonic tremor have peak frequency range 1.5 — 2.2 Hz. The phase space is reconstructed and evaluated based on the Lyapunov exponents. Harmonic tremors have smaller Lyapunov exponent than explosion earthquakes. It can be considerably as correlated complexity of the mechanism from the variance of spectral and fractal dimension and can be concluded that the successive event of harmonic tremor and explosions are chaotic.
Keywords: Semeru volcano, explosion earthquakes, harmonic tremor, lyapunov exponent, chaotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584957 Reimagining the Learning Management System as a “Third” Space
Authors: Christina Van Wingerden
Abstract:
This paper focuses on a sense of belonging, isolation, and the use of a learning management system as a “third space” for connection and community. Given student use of learning management systems (LMS) for courses on campuses, moderate to high use of social media and hand-held devices, the author explores the possibilities of LMS as a third space. The COVID-19 pandemic has exacerbated student experiences of isolation, and research indicates that students who experience a sense of belonging have a greater likelihood for academic retention and success. The impacts on students of an LMS designed for student employee orientation and training were examined through a mixed methods approach, including a survey, individual interviews, and focus groups. The sample involved 250-450 undergraduate student employees at a US northwestern university. The goal of the study was to find out the efficiency and effectiveness of the orientation information for a wide range of student employees from multiple student affairs departments. And unexpected finding emerged within the study in 2015 and was noted again as a finding in the 2017 study. Students reported feeling like they individually connected to the department, and further to the university because of the LMS orientation. They stated they could see themselves as part of the university community and like they belonged. The orientation, through the LMS, was designed for and occurred online (asynchronous), prior to students traveling and beginning university life for the academic year. The students indicated connection and belonging resulting from some of the design features. With the onset of COVID-19 and prolonged sheltering in place in North America, as well as other parts of the world, students have been precluded from physically gathering to educate and learn. COVID-19 essentially paused face-to-face education in 2020. Media, governments, and higher education outlets have been reporting on widespread college student stress, isolation, loneliness, and sadness. In this context, the author conducted a current mixed methods study (online survey, online interviews) of students in advanced degree programs, like Ph.D. and Ed.D. specifically investigating isolation and sense of belonging. As a part of the study a prototype of a Canvas site was experienced by student interviewees for their reaction of this Canvas site prototype as a “third” space. Some preliminary findings of this study are presented. Doctoral students in the study affirmed the potential of LMS as a third space for community and social academic connection.Keywords: COVID-19, learning management systems, sense of belonging, third space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615956 On Figuring the City Characteristics and Landscape in Overall Urban Design: A Case Study in Xiangyang Central City, China
Authors: Guyue Zhu, Liangping Hong
Abstract:
Chinese overall urban design faces a large number of problems such as the neglect of urban characteristics, generalization of content, and difficulty in implementation. Focusing on these issues, this paper proposes the main points of shaping urban characteristics in overall urban design: focuses on core problems in city function and scale, landscape pattern, historical culture, social resources and modern city style and digs the urban characteristic genes. Then, we put forward “core problem location and characteristic gene enhancement” as a kind of overall urban design technical method. Firstly, based on the main problems in urban space as a whole, for the operability goal, the method extracts the key genes and integrates into the multi-dimension system in a targeted manner. Secondly, hierarchical management and guidance system is established which may be in line with administrative management. Finally, by converting the results, action plan is drawn up that can be dynamically implemented. Based on the above idea and method, a practical exploration has been performed in the case of Xiangyang central city.Keywords: City characteristics, overall urban design, planning implementation, Xiangyang central city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955955 On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error
Authors: Hong Son Hoang, Remy Baraille
Abstract:
This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.Keywords: Statistical simulation, canonical form, dynamical system, Markov and non-Markovian processes, data assimilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302954 The Construction of Interactive Computer Multimedia Instruction on “Basic Japanese Vocabulary“
Authors: Kongrit Jittangthammagul, Sakesun Yampinij, Thapanee Endoo, Nattapong Kramwong
Abstract:
The study entitled “The Construction of Interactive Computer Multimedia Instruction on Basic Japanese Vocabulary" was aimed: 1) To construct the interactive computer multimedia instruction on Basic Japanese Vocabulary, 2) To find out multimedia-s quality, 3) To examine the student-s satisfaction and 4) To study the learning achievement in Basic Japanese vocabulary. The sampling group used in this study was composed of 40 1st year student in Educational Communications and Technology Department, Faculty of Industrial Education and Technology, King Mongkut-s University of Technology Thonburi, in the academic year 2553 B.E. (2010). According to research results, we found that 1). The quality assessment by 3 mass media experts was at 4.72 on average or at high level. 2) In terms of contents, the evaluation by 3 experts was at 4.81 on average or at high level. 3) In terms of achievement, there was a statistical significance between before and after the treatment at the .05 level. 4) The satisfaction of students towards the interactive computer multimedia Instruction on “Basic Japanese Vocabulary" was 4.35 on average, or at high level.Keywords: Interactive Computer Multimedia on Basic Japanese Vocabulary, Learning Achievement, Quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500953 Environmental Efficiency of Electric Power Industry of the United States: A Data Envelopment Analysis Approach
Authors: Alexander Y. Vaninsky
Abstract:
Importance of environmental efficiency of electric power industry stems from high demand for energy combined with global warming concerns. It is especially essential for the world largest economies like that of the United States. The paper introduces a Data Envelopment Analysis (DEA) model of environmental efficiency using indicators of fossil fuels utilization, emissions rate, and electric power losses. Using DEA is advantageous in this situation over other approaches due to its nonparametric nature. The paper analyzes data for the period of 1990 - 2006 by comparing actual yearly levels in each dimension with the best values of partial indicators for the period. As positive factors of efficiency, tendency to the decline in emissions rates starting 2000, and in electric power losses starting 2004 may be mentioned together with increasing trend of fuel utilization starting 1999. As a result, dynamics of environmental efficiency is positive starting 2002. The main concern is the decline in fossil fuels utilization in 2006. This negative change should be reversed to comply with ecological and economic requirements.
Keywords: Environmental efficiency, electric power industry, DEA, United States.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908952 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System
Authors: Manisha Dubey, Aalok Dubey
Abstract:
This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739951 Reflections of Utopia and the Ideal City in the Development of Physical Structure of Nikšić Aspect of Visual Perception
Authors: Svetlana Perović, Svetislav Popović
Abstract:
Aspect of visual perception occupies a central position in shaping the physical structure of a city. This paper discusses the visual characteristics of utopian cities and their impact on the shaping of real urban structures. Utopian examples of cities will not be discussed in terms of social and sociological conditions, but rather the emphasis is on urban utopias and ideal cities that have achieved or have had potential impact on the shape of the physical structure of Nikšić. It is a Renaissance-Baroque period with a touch of classicism. The paper’s emphasis is on the physical dimension, not excluding the importance of social equilibrium, studies of which are dating back to Aristotle, Plato, Thomas More, Robert Owen, Tommaso Campanella and others. The emphasis is on urban utopias and their impact on the development of sustainable physical structure of a real city in the context of visual perception. In the case of Nikšić, this paper identifies the common features of a real city and a utopian city, as well as criteria for sustainable urban development in the context of visual achievement.
Keywords: Physical Structure of Nikšić, Utopia and Ideal City, Visual Perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153950 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57949 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.
Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243948 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: Big data, k-NN, machine learning, traffic speed prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380947 MDA of Hexagonal Honeycomb Plates used for Space Applications
Authors: A. Boudjemai , M.H. Bouanane, Mankour, R. Amri, H. Salem, B. Chouchaoui
Abstract:
The purpose of this paper is to perform a multidisciplinary design and analysis (MDA) of honeycomb panels used in the satellites structural design. All the analysis is based on clamped-free boundary conditions. In the present work, detailed finite element models for honeycomb panels are developed and analysed. Experimental tests were carried out on a honeycomb specimen of which the goal is to compare the previous modal analysis made by the finite element method as well as the existing equivalent approaches. The obtained results show a good agreement between the finite element analysis, equivalent and tests results; the difference in the first two frequencies is less than 4% and less than 10% for the third frequency. The results of the equivalent model presented in this analysis are obtained with a good accuracy. Moreover, investigations carried out in this research relate to the honeycomb plate modal analysis under several aspects including the structural geometrical variation by studying the various influences of the dimension parameters on the modal frequency, the variation of core and skin material of the honeycomb. The various results obtained in this paper are promising and show that the geometry parameters and the type of material have an effect on the value of the honeycomb plate modal frequency.
Keywords: Satellite, honeycomb, finite element method, modal frequency, dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4109946 Fish Locomotion for Innovative Marine Propulsion Systems
Authors: Omar B. Yaakob, Yasser M. Ahmed, Ahmad F. Said
Abstract:
There is an essential need for obtaining the mathematical representation of fish body undulations, which can be used for designing and building new innovative types of marine propulsion systems with less environmental impact. This research work presents a case study to derive the mathematical model for fish body movement. Observation and capturing image methods were used in this study in order to obtain a mathematical representation of Clariasbatrachus fish (catfish). An experiment was conducted by using an aquarium with dimension 0.609 m x 0.304 m x 0.304 m, and a 0.5 m ruler was attached at the base of the aquarium. Progressive Scan Monochrome Camera was positioned at 1.8 m above the base of the aquarium to provide swimming sequences. Seven points were marked on the fish body using white marker to indicate the fish movement and measuring the amplitude of undulation. Images from video recordings (20 frames/s) were analyzed frame by frame using local coordinate system, with time interval 0.05 s. The amplitudes of undulations were obtained for image analysis from each point that has been marked on fish body. A graph of amplitude of undulations versus time was plotted by using computer to derive a mathematical fit. The function for the graph is polynomial with nine orders.
Keywords: Fish locomotion, body undulation, steady and unsteady swimming modes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205945 A Review and Comparative Analysis on Cluster Ensemble Methods
Authors: S. Sarumathi, P. Ranjetha, C. Saraswathy, M. Vaishnavi, S. Geetha
Abstract:
Clustering is an unsupervised learning technique for aggregating data objects into meaningful classes so that intra cluster similarity is maximized and inter cluster similarity is minimized in data mining. However, no single clustering algorithm proves to be the most effective in producing the best result. As a result, a new challenging technique known as the cluster ensemble approach has blossomed in order to determine the solution to this problem. For the cluster analysis issue, this new technique is a successful approach. The cluster ensemble's main goal is to combine similar clustering solutions in a way that achieves the precision while also improving the quality of individual data clustering. Because of the massive and rapid creation of new approaches in the field of data mining, the ongoing interest in inventing novel algorithms necessitates a thorough examination of current techniques and future innovation. This paper presents a comparative analysis of various cluster ensemble approaches, including their methodologies, formal working process, and standard accuracy and error rates. As a result, the society of clustering practitioners will benefit from this exploratory and clear research, which will aid in determining the most appropriate solution to the problem at hand.
Keywords: Clustering, cluster ensemble methods, consensus function, data mining, unsupervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836944 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks
Authors: M. Zerikat, S. Chekroun
Abstract:
This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032943 Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet
Authors: S. Odeh, E. Abdelghani
Abstract:
Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.Keywords: Collaboration environment, e-tutor, multi-user environments, socio-technical system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487942 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach
Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov
Abstract:
There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733941 Length Dimension Correlates of Longitudinal Physical Conditioning on Indian Male Youth
Authors: Seema Sharma Kaushik, Dhananjoy Shaw
Abstract:
Various length dimensions of the body have been a variable of interest in the research areas of kinanthropometry. However the inclusion of length measurements in various studies remains restricted to reflect characteristics of a particular game/sport at a particular time. Hence, the present investigation was conducted to study various length dimensions correlates of a longitudinal physical conditioning program on Indian male youth. The study was conducted on 90 Indian male youth. The sample was equally divided into three groups namely, progressive load training (PLT), constant load training (CLT) and no load training (NL). The variables included sitting height, leg length, arm length and foot length. The study was conducted by adopting the multi group repeated measure design. Three different groups were measured four times after completion of each of the three meso-cycles of six-weeks duration each. The measurements were taken using the standard landmarks and procedures. Mean, standard deviation and analysis of co-variance were computed to analyze the data statistically. The post-hoc analysis was conducted for the significant F-ratios at 0.05 level. The study concluded that the followed longitudinal physical conditioning program had significant effect on various length dimensions of Indian male youth.
Keywords: Indian male youth, longitudinal, length dimensions, physical conditioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606940 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data
Authors: Rohan Putatunda, Aryya Gangopadhyay
Abstract:
Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).
Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435939 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.
Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348938 EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method
Authors: Montri Phothisonothai, Masahiro Nakagawa
Abstract:
The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.
Keywords: electroencephalogram (EEG), motor imagery tasks, mental tasks, biomedical signals processing, human-machine interface, fractal analysis, critical exponent method (CEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264