Search results for: Liouville-type problems
957 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.
Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740956 A Framework to Support Reuse in Object-Oriented Software Development
Authors: Fathi Taibi
Abstract:
Reusability is a quality desired attribute in software products. Generally, it could be achieved through adopting development methods that promote it and achieving software qualities that have been linked with high reusability proneness. With the exponential growth in mobile application development, software reuse became an integral part in a substantial number of projects. Similarly, software reuse has become widely practiced in start-up companies. However, this has led to new emerging problems. Firstly, the reused code does not meet the required quality and secondly, the reuse intentions are dubious. This work aims to propose a framework to support reuse in Object-Oriented (OO) software development. The framework comprises a process that uses a proposed reusability assessment metric and a formal foundation to specify the elements of the reused code and the relationships between them. The framework is empirically evaluated using a wide range of open-source projects and mobile applications. The results are analyzed to help understand the reusability proneness of OO software and the possible means to improve it.
Keywords: Software reusability, software metrics, object-oriented software, modularity, low complexity, understandability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 379955 Coastal Resource Management: Fishermen-s Perceptions of Seaweed Farming in Indonesia
Authors: Achmad Zamroni, Masahiro Yamao
Abstract:
Seaweed farming is emerging as a viable alternative activity in the Indonesian fisheries sector. This paper aims to investigate people-s perceptions of seaweed farming, to analyze its social and economic impacts and to identify the problems and obstacles hindering its continued development. Structured and semi-structured questionnaires were prepared to obtain qualitative data, and interviews were conducted with fishermen who also plant seaweed. The findings showed that fishermen in the Laikang Bay were enthusiastic about cultivating seaweeds and that seaweed plays a major role in supporting the household economy of fishermen. However, current seaweed drying technologies cannot support increased seaweed production on a farm or plot, especially in the rainy season. Additionally, variable monsoon seasons and long marketing channels are still major constraints on the development of the industry. Finally, capture fisheries, the primary economic livelihood of fishermen of older generations, is being slowly replaced by seaweed farming.Keywords: Coastal management, perception, seaweed development and livelihood diversification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2875954 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects
Authors: Yohannes Yirga, Daniel Tesfay
Abstract:
The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.
Keywords: Heat and mass transfer, magnetohydrodynamics, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3784953 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique
Authors: P. Acharjee, S. K. Goswami
Abstract:
Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816952 A Basic Study on Ubiquitous Overloaded Vehicles Regulation System
Authors: Byung-Wan Jo, Kwang-Won Yoon, Ji-Sun Choi
Abstract:
Load managing method on road became necessary since overloaded vehicles occur damage on road facilities and existing systems for preventing this damage still show many problems.Accordingly, efficient managing system for preventing overloaded vehicles could be organized by using the road itself as a scale by applying genetic algorithm to analyze the load and the drive information of vehicles.Therefore, this paper organized Ubiquitous sensor network system for development of intelligent overload vehicle regulation system, also in this study, to use the behavior of road, the transformation was measured by installing underground box type indoor model and indoor experiment was held using genetic algorithm. And we examined wireless possibility of overloaded vehicle regulation system through experiment of the transmission and reception distance.If this system will apply to road and bridge, might be effective for economy and convenience through establishment of U-IT system..Keywords: Overload Vehicle. Genetic Algorithm, EmbeddedSystem, Wim Sensor, overload vehicle regulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566951 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078950 Immunity of Integrated Drive System, Effects of Radiated and Conducted Emission
Authors: M. Ektesabi
Abstract:
In this paper the problems associated with immunity of embedded systems used in Motor-Drive systems are investigated and appropriate solutions are presented. Integration of VSD motor systems (Integral Motor) while partially reducing some of these effects, adds to immunity problem of their embedded systems. Fail safe operation of an Integral Motor in arduous industrial environments is considered. In this paper an integral motor with a unique design is proposed to overcome critical issues such as heat, vibration and electromagnetic interference which are damaging to sensitive electronics without requirement of any additional cooling system. Advantages of the proposed Integral motor are compactness of combo motor and drive system with no external cabling/wiring. This motor provides a perfect shielding for least amount of radiated emission. It has an inbuilt filter for EMC compliance and has been designed to provide lower EMC noise for immunity of the internal electronics as well as the other neighbouring systems.Keywords: Electromagnetic Interference, Immunity, IntegralMotor, Radiated & Conducted Emission, Sensitive Electronics, Variable Speed Drive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903949 Closely Parametrical Model for an Electrical Arc Furnace
Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel
Abstract:
To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.Keywords: Modelling, electrical arc, melting, power, EAF, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247948 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423947 Solar-Inducted Cluster Head Relocation Algorithm
Authors: Goran Djukanovic, Goran Popovic
Abstract:
A special area in the study of Wireless Sensor Networks (WSNs) is how to move sensor nodes, as it expands the scope of application of wireless sensors and provides new opportunities to improve network performance. On the other side, it opens a set of new problems, especially if complete clusters are mobile. Node mobility can prolong the network lifetime. In such WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. This paper presents an idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network reduces, and the lifetime of the network extends. Positioning of CHs is made in each round based on selfish herd hypothesis, where leader retreats to the center of gravity. Based on this idea, an algorithm, together with its modified version, has been presented and tested in this paper. Simulation results show that both algorithms have benefits in network lifetime, and prolongation of network stability period duration.
Keywords: CH-active algorithm, mobile cluster head, sensors, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038946 Progressive Strategy of Milling by means of Tool Axis Inclination Angle
Authors: Sadílek M., Čep R.
Abstract:
This work deals with problems of tool axis inclination angles in ball-end milling. Tool axis inclination angle contributes to improvement of functional surface properties (surface integrity - surface roughness, residual stress, micro hardness, etc.), decreasing cutting forces and improving production. By milling with ball-end milling tool, using standard way of cutting, when work piece and cutting tool contain right angle, we have zero cutting speed on edge. At this point cutting tool only pushes material into the work piece. Here we can observe the following undesirable effects - chip contraction, increasing of cutting temperature, increasing vibrations or creation of built-up edge. These effects have negative results – low quality of surface and decreasing of tool life (in the worse case even it is pinching out). These effects can be eliminated with the tilt of cutting tool or tilt of work piece.
Keywords: CAD/CAM system, tool axis inclination angle, ballend milling, surface roughness, cutting forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853945 A Phenomic Algorithm for Reconstruction of Gene Networks
Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy
Abstract:
The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.
Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926944 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom
Authors: Phalaunnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.
Keywords: Multiple intelligences, role play, performance assessment, formative assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541943 Fingerprint Verification System Using Minutiae Extraction Technique
Authors: Manvjeet Kaur, Mukhwinder Singh, Akshay Girdhar, Parvinder S. Sandhu
Abstract:
Most fingerprint recognition techniques are based on minutiae matching and have been well studied. However, this technology still suffers from problems associated with the handling of poor quality impressions. One problem besetting fingerprint matching is distortion. Distortion changes both geometric position and orientation, and leads to difficulties in establishing a match among multiple impressions acquired from the same finger tip. Marking all the minutiae accurately as well as rejecting false minutiae is another issue still under research. Our work has combined many methods to build a minutia extractor and a minutia matcher. The combination of multiple methods comes from a wide investigation into research papers. Also some novel changes like segmentation using Morphological operations, improved thinning, false minutiae removal methods, minutia marking with special considering the triple branch counting, minutia unification by decomposing a branch into three terminations, and matching in the unified x-y coordinate system after a two-step transformation are used in the work.
Keywords: Biometrics, Minutiae, Crossing number, False Accept Rate (FAR), False Reject Rate (FRR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6574942 Social and Spatial Aspects of Housing Development Affecting Urban Quality of Life -the Case of Famagusta
Authors: L. Cazacova, A. Erdelhun, A.M. Saymanlier, N. Cazacova, U. Ulbar
Abstract:
Today due to rising levels of housing- necessities, several problems have been raised regarding to urban quality of life. The aim of the research is to study social and spatial aspects of housing environment and to find out their interaction with the urban quality of life. As a case of study two pilot areas of Famagusta city in North Cyprus, were selected: Baykal, considered as an established urban district and Tuzla, a newly developed peri-urban district. In order to determine urban quality of life in planning and developing of housing areas, social and spatial aspects of selected areas have been examined, differences between them according to the planning policy have been pointed out, advantages and disadvantages of housing planning have been found. As a practical implementation of the research a number of households in each selected area have been interviewed in order to draw a conclusion.Keywords: housing development, Famagusta, quality of life, social and spatial aspects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734941 Filtering and Reconstruction System for Gray Forensic Images
Authors: Ahd Aljarf, Saad Amin
Abstract:
Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.
Keywords: Image Filtering, Image Reconstruction, Image Processing, Forensic Images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213940 Design of a Pneumonia Ontology for Diagnosis Decision Support System
Authors: Sabrina Azzi, Michal Iglewski, Véronique Nabelsi
Abstract:
Diagnosis error problem is frequent and one of the most important safety problems today. One of the main objectives of our work is to propose an ontological representation that takes into account the diagnostic criteria in order to improve the diagnostic. We choose pneumonia disease since it is one of the frequent diseases affected by diagnosis errors and have harmful effects on patients. To achieve our aim, we use a semi-automated method to integrate diverse knowledge sources that include publically available pneumonia disease guidelines from international repositories, biomedical ontologies and electronic health records. We follow the principles of the Open Biomedical Ontologies (OBO) Foundry. The resulting ontology covers symptoms and signs, all the types of pneumonia, antecedents, pathogens, and diagnostic testing. The first evaluation results show that most of the terms are covered by the ontology. This work is still in progress and represents a first and major step toward a development of a diagnosis decision support system for pneumonia.
Keywords: Clinical decision support system, diagnostic errors, ontology, pneumonia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882939 Quality of Life of Poor Residential Neighborhoods in Oshogbo, Nigeria
Authors: Funmilayo L. Amao
Abstract:
As a result of the high cost of housing, the increasing population is forced to live in substandard housing and unhealthy conditions giving rise to poor residential neighborhoods. The paper examines the causes and characteristics of poor residential neighborhood. The paper finds the problems that have influence poor neighborhoods to; poverty, growth of informal sector and housing shortage. The paper asserts that poor residential neighborhoods have adverse effects on the people.
The secondary data was obtained from books, journals and seminar papers while primary data relating to building and environmental quality from structured questionnaire administered on sample of 500 household heads, from sampling frame of 5000 housing units.
The study reveals that majority of the respondents are poor and employed in informal sector. The paper suggests urban renewal and slum upgrading programs as methods in dealing with the situation and an improvement in the socio-economic circumstances of the inhabitants.
Keywords: Environmental Degeneration, Housing, Poverty, Quality of life, Urban Upgrading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461938 Deep Web Content Mining
Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi
Abstract:
The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.Keywords: Content mining, complex matching, correlation mining, information extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278937 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents
Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera
Abstract:
The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.
Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4135936 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data
Authors: Benjamin D. Leiby, Darryl K. Ahner
Abstract:
This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions, while presenting a need for further refinement that mimics predictive mean matching.
Keywords: Correlation, country conflict, imputation, stochastic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 418935 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN
Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang
Abstract:
Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.
Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771934 Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA
Authors: Rahmah, M., Farhan, M., Akidah, N.M.Y
Abstract:
Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.
Keywords: Appearance peak, LLDPE, PVA, sago starch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3030933 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567932 Urban Sprawl and the Loss of Peri-Urban Land in Kumasi, Ghana
Authors: Patrick B. Cobbinah, Clifford Amoako
Abstract:
Kumasi is Ghana’s second largest and fastest growing city with an annual population growth rate of 5.4 percent. A major result of this phenomenon is a growing sprawl at the fringes of the city. This paper assesses the nature, extent and impact of sprawl on Kumasi and examines urban planning efforts at addressing this phenomenon. Both secondary and empirical data were collected from decentralized government departments of the Kumasi Metropolitan Assembly and residents of some sprawling communities. The study reveals that sprawl in the metropolis is rapidly consuming fringe rural communities. This situation has weakened effective management of the metropolis causing problems such as congestion and conversion of peri-urban land into residential use without ancillary infrastructure and social services. The paper recommends effective and timely planning and provision of services as well as an overall economic development and spatial integration through regional planning as a way of achieving a long term solution to sprawl.
Keywords: Kumasi, peri-urban, urban planning, urban sprawl.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4978931 Application of Artificial Intelligence for Tuning the Parameters of an AGC
Authors: R. N. Patel
Abstract:
This paper deals with the tuning of parameters for Automatic Generation Control (AGC). A two area interconnected hydrothermal system with PI controller is considered. Genetic Algorithm (GA) and Particle Swarm optimization (PSO) algorithms have been applied to optimize the controller parameters. Two objective functions namely Integral Square Error (ISE) and Integral of Time-multiplied Absolute value of the Error (ITAE) are considered for optimization. The effectiveness of an objective function is considered based on the variation in tie line power and change in frequency in both the areas. MATLAB/SIMULINK was used as a simulation tool. Simulation results reveal that ITAE is a better objective function than ISE. Performances of optimization algorithms are also compared and it was found that genetic algorithm gives better results than particle swarm optimization algorithm for the problems of AGC.
Keywords: Area control error, Artificial intelligence, Automatic generation control, Genetic Algorithms and modeling, ISE, ITAE, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030930 Consensus of Multi-Agent Systems under the Special Consensus Protocols
Authors: Konghe Xie
Abstract:
Two consensus problems are considered in this paper. One is the consensus of linear multi-agent systems with weakly connected directed communication topology. The other is the consensus of nonlinear multi-agent systems with strongly connected directed communication topology. For the first problem, a simplified consensus protocol is designed: Each child agent can only communicate with one of its neighbors. That is, the real communication topology is a directed spanning tree of the original communication topology and without any cycles. Then, the necessary and sufficient condition is put forward to the multi-agent systems can be reached consensus. It is worth noting that the given conditions do not need any eigenvalue of the corresponding Laplacian matrix of the original directed communication network. For the second problem, the feedback gain is designed in the nonlinear consensus protocol. Then, the sufficient condition is proposed such that the systems can be achieved consensus. Besides, the consensus interval is introduced and analyzed to solve the consensus problem. Finally, two numerical simulations are included to verify the theoretical analysis.Keywords: Consensus, multi-agent systems, directed spanning tree, the Laplacian matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914929 Socio-Economic Insight of the Secondary Housing Market in Colombo Suburbs: Seller’s Point of Views
Authors: R. G. Ariyawansa, M. A. N. R. M. Perera
Abstract:
“House” is a powerful symbol of socio-economic background of individuals and families. In fact, housing provides all types of needs/wants from basic needs to self-actualization needs. This phenomenon can be realized only having analyzed hidden motives of buyers and sellers of the housing market. Hence, the aim of this study is to examine the socio-economic insight of the secondary housing market in Colombo suburbs. This broader aim was achieved via analyzing the general pattern of the secondary housing market, identifying socio-economic motives of sellers of the secondary housing market, and reviewing sellers’ experience of buyer behavior. A purposive sample of 50 sellers from popular residential areas in Colombo such as Maharagama, Kottawa, Piliyandala, Punnipitiya, and Nugegoda was used to collect primary data instead of relevant secondary data from published and unpublished reports. The sample was limited to selling price ranging from Rs15 million to Rs25 million, which apparently falls into middle and upper-middle income houses in the context. Participatory observation and semi-structured interviews were adopted as key data collection tools. Data were descriptively analyzed. This study found that the market is mainly handled by informal agents who are unqualified and unorganized. People such as taxi/tree-wheel drivers, boutique venders, security personals etc. are engaged in housing brokerage as a part time career. Few fulltime and formally organized agents were found but they were also not professionally qualified. As far as housing quality is concerned, it was observed that 90% of houses was poorly maintained and illegally modified. They are situated in poorly maintained neighborhoods as well. Among the observed houses, 2% was moderately maintained and 8% was well maintained and modified. Major socio-economic motives of sellers were “migrating foreign countries for education and employment” (80% and 10% respectively), “family problems” (4%), and “social status” (3%). Other motives were “health” and “environmental/neighborhood problems” (3%). This study further noted that the secondary middle income housing market in the area directly related with the migrants who motivated for education in foreign countries, mainly Australia, UK and USA. As per the literature, families motivated for education tend to migrate Colombo suburbs from remote areas of the country. They are seeking temporary accommodation in lower middle income housing. However, the secondary middle income housing market relates with the migration from Colombo to major global cities. Therefore, final transaction price of this market may depend on migration related dates such as university deadlines, visa and other agreements. Hence, it creates a buyers’ market lowering the selling price. Also it was revealed that the buyers tend to trust more on this market as far as the quality of construction of houses is concerned than brand new houses which are built for selling purpose.Keywords: Informal housing market, hidden motives of buyers and sellers, secondary housing market, socio-economic insight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698928 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848