

Abstract—Reusability is a quality desired attribute in software

products. Generally, it could be achieved through adopting
development methods that promote it and achieving software qualities
that have been linked with high reusability proneness. With the
exponential growth in mobile application development, software reuse
became an integral part in a substantial number of projects. Similarly,
software reuse has become widely practiced in start-up companies.
However, this has led to new emerging problems. Firstly, the reused
code does not meet the required quality and secondly, the reuse
intentions are dubious. This work aims to propose a framework to
support reuse in Object-Oriented (OO) software development. The
framework comprises a process that uses a proposed reusability
assessment metric and a formal foundation to specify the elements of
the reused code and the relationships between them. The framework is
empirically evaluated using a wide range of open-source projects and
mobile applications. The results are analyzed to help understand the
reusability proneness of OO software and the possible means to
improve it.

Keywords—Software reusability, software metrics, object-
oriented software, modularity, low complexity, understandability.

I. INTRODUCTION
INCE the early days of programming, some forms of
improvised code reuse has been practiced. However, the

usage of reusable components in industrial software
development was first introduced in the late sixties by Douglas
McIlroy [22]. Even though code reuse [9] is widely practiced in
software development, other software artefact such as design
skeletons and processes are reused as well. By reusing software,
the cost of the development is reduced, the speed of
development is increased, and reliability is improved [18], [12].

Agile methods are widely and successfully adopted in
software development. For this reason, agile software project
management is being considered for other industries [6]. Rapid
and continuous delivery is one of the key principles that guide
the management of agile projects today and is a major trend in
the software industry. For example, a company like Amazon
deploys code every 11.7 seconds. This hints clearly to a direct
link between fast delivery and software reuse.

Software start-up companies are an interesting phenomenon
to study in the context of software reuse. Since the reduction of
time-to-market is one of the most important objectives in this
context, exploiting code-reuse, development frameworks and
design patterns make a lot of sense [15]. Specifying these
patterns formally promotes their reusability even further.
However, there are suggestions that design patterns should be

F. Taibi is an independent researcher and a consultant in international

development cooperation projects, Algeria (e-mail: ft.taibi@gmail.com).

used cautiously due to the possibility that they may hinder
maintenance and evolution [16].

Human reusability assessment and fault prediction could be
mimicked through neural networks [31]. The studied prediction
models are predominately statistical based, based on machine
learning or based on software metrics [4]. The identification of
the appropriate metrics that can be used to perform the
prediction or assessment is crucial. Readability or
understandability of the source code is a factor that is often
associated with software reusability proneness. Using naming
conventions and writing useful comments are examples of
techniques that can improve understandability. The usage of
naming conventions has been found to be reliable if the names
used are related to the concepts implemented [3]. Maintenance
tasks are made difficult to carry in the presence of lexicon bad
smells such as inconsistent term usage and odd grammatical
structures [1]. Moreover, high complexity must be avoided
since it is associated with programs that are less reusable, hard
to test and maintain. Furthermore, structuring program code
using modules that are highly cohesive [20] and highly
independent [8] is a vital factor for reusability.

Excessive coupling between classes was found to be a very
reliable predictor of faults in OO systems as indicated in [11]
where it was found that Coupling Between Objects (CBO) is
more reliable than Lack of Cohesion of Methods (LCOM) and
several other OO design metrics in predicting faults. The
combination of this metric (i.e., CBO) with metrics addressing
the other aspects could form the basis of a reusability
assessment approach since they allow measuring the factors
related to the reusability proneness of program code while at the
same time discarding defect-prone code from being reused.
Finally, it is important to note that classes participating in
antipatterns (i.e., bad smells, which are poorly designed classes)
have been found to be more change and fault prone than those
that do not [16].

Reusing existing code is beneficial only if the reused code
possesses the required quality. The explosion in the amount of
open-source software projects and mobile applications could be
seen as a direct consequence of massive code reuse. This poses
two major problems. The overall quality of most of these
projects is unknown. Reusing them blindly can cause major
problems. Worse, a considerable amount of these projects is
reported as being malicious. This is especially true for mobile
applications. Hence, it is important to have a framework to
support reuse in OO software development by assessing the

Fathi Taibi

A Framework to Support Reuse in Object-Oriented
Software Development

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:12, 2022

614International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
85

7.
pd

f

reusability proneness of potential source code.
The remainder of the paper is organized as follows: Section

II gives an overview of the problem and reviews related work.
Section III details the proposed framework, which consists of a
formal foundation to specify the manipulated source code, the
proposed reusability assessment metric and the assessment
process. Section IV provides the details of the empirical
investigation performed in order to assess the reusability
proneness of open-source projects and mobile applications. The
analysis of the results helps in understanding the extent of this
quality, the factors hindering it and the effectiveness of the
proposed metric in reusability assessment prediction. Finally,
Section V summaries the findings of this research and
highlights future research directions.

II. RELATED WORK
A model for the process involved in performing a pragmatic

reuse task was proposed in [14]. This included how to capture
the decisions of a developer regarding how each program
element should be treated (i.e., a pragmatic-reuse plan). Partial
tool support was provided, which can take the selected source
code from its originating system and integrating it into the
target system (i.e., the developer’s one). A series of case studies
and experiments were conducted using a variety of source
systems and tasks. These experiments showed a significant
decrease in the time that developers require to perform
pragmatic reuse tasks, an increase in the likelihood that
developers will successfully complete their reuse tasks, a
decrease in the time required to identify infeasible reuse tasks,
and an improved sense in the ability of developers to manage
the risk in these tasks.

A tool supported quality model on maintainability and
reusability of software was presented in [19]. It relied on user
intuition in selecting a metric set for their projects where
modularity and complexity were used to measure reusability.
Modularity was measured based on the cohesion and coupling
of classes while the internal and external complexity of classes
was used to assess complexity.

An empirical investigation was conducted in [2] in order to
study the ability of 29 internal class measures to estimate reuse
proneness from the perspectives of inheritance and
instantiation. These measures represent class attributes such as
cohesion, coupling and size. Size and coupling attributes were
found to be correlated to the reuse proneness of a class via
inheritance and instantiation. The cohesion attribute has a
positive impact on the reuse proneness of a class via
instantiation only. Due to the large number of attributes used
and the overlapping in the qualities they measure, the model
lacked effectiveness.

A metric suite was proposed in [30] to measure the
reusability of components in component-based software
development. This suite consisted of the definition of five
metrics in order to measure understandability, adaptability and
portability factors of a given component. Statistical analysis of
a number of JavaBeans components was used to set a
confidence interval for each metric. The existence of meta-
information was used to measure the understandability and the

observability of a component. Adaptability and portability were
measured based on metrics, rating customizability and external
dependency, respectively.

A new coupling and cohesion metrics to rank the reusability
of Java components was proposed in [10]. Interestingly,
cohesion was measured as the degree of relativeness among the
methods of a class (including transitive cohesion). A similar
intuition was used for the proposed coupling metric. In
comparison to some of the existing cohesion and coupling
metrics, the experiments conducted revealed that the proposed
metrics were better predictors of the amount of code that was
added, modified or deleted in order to extend the functionality
of the studied components.

An empirical study was conducted on software reuse in Java
open-source project [13]. It was aimed at studying the extent of
code reuse occurrence and third-party code usage. Black-box
software reuse was found to be the predominant form of
software reuse. Moreover, in 95% of the cases the amount of
reused code exceeded the amount of the original one.

Assessing the reusability proneness of OO code at the class
level obeys different considerations in comparison with the
assessment of components in Component Based Software
Engineering (CBSE). A component is considered in this context
as a black box. Several reusability metrics were surveyed in
[17]. The adaptability, interface, composability, complexity and
understandability were used predominantly across the surveyed
work.

An investigation into the applicability of software metrics in
the software fault prediction was conducted in [24]. A total of
106 papers that were published between 1991 and 2011 were
selected and classified according to metrics and context
properties. The findings of this investigation showed that OO
metrics were used nearly twice as often compared to traditional
source code metrics or process metric. The metrics proposed by
Chidamber and Kemerer’s (CK) [5] were most frequently used.
In comparison to size and complexity metrics, OO and process
metrics have been reported to be better fault detectors, while
process metrics are better predictors of post-release faults
compared to any static code metrics [24].

A large number of mobile applications (265359) were
analyzed in [7] and 1.62% (4295) of them were discovered to
be victims of cloning. Each one of these applications was
probably cloned several times. Additionally, 13.61% (36106)
applications were rebranded including 88 malware and 169
malicious applications. Duplicative application content and
library usage in Google Play was a subject of a large-scale
investigation in [29] among other concerns. Interestingly, the
amount of duplicative application content among the free
applications was around 25%. Moreover, over half of the free
Android applications use advertising libraries. Furthermore, an
increase in the popularity of an application is correlated with
the usage of native libraries, which is meant to optimize the user
experience of the application.

In order to have a good reusability proneness predictor
several factors should be considered while avoiding redundancy
among the measured features. Although cohesion and coupling
metrics have been proven to be good reusability predictors, they

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:12, 2022

615International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
85

7.
pd

f

need to be combined with other important factors measuring the
complexity, understandability and customizability among
others.

III. THE PROPOSED FRAMEWORK
The proposed framework is aimed at specifying the

manipulated code and proposing reusability assessment metric
and process. The proposed metric and approach are an
extension of the one proposed in [25] and [26] based on the
findings of the initial empirical investigation as well as the
formal specification of the elements of the manipulated code
and the relationships between them.

A. Formal Foundation
Using the formal specification language Z [23], below is a

formal specification of the manipulated code where: ‘Name’ is
the set of all valid names of the elements of a program, ‘Type’
is a set of all possible valid types (incl. void) and ‘CodeLine’
represents any line of code with three sub-types
(SimpleCodeLine, CommentCodeLine and MixedCodeLine).
For the sake of practicality, three visibility levels are considered
for the elements of a program: public, private and protected.
Similarly, three types of relationships between classes are
considered: aggregation, inheritance, and any other form of
dependency (i.e., association). Figs. 1 and 2 show a formal
specification of the types, parameters, attributes, constructors,
methods, classes, files, and projects of the manipulated code.

Fig. 1 Formal specification in Z of the types, parameters, attributes,
constructors, and methods of the manipulated code

In a program, a parameter has a name and a type associated

with it, whereas an attribute has all elements of a parameter in
addition to a visibility. Furthermore, a constructor has a name,
a visibility and a set of parameters, whereas a method has all

the elements of a constructor in addition to a return type.

Fig. 2 Formal specification in Z of the classes, files, and projects of
the manipulated code

A class has a name, a visibility, a set of attributes and

methods. A program code file has a name, a non-empty set of
code lines, a non-empty set of classes and a set of relationships
between these classes. Finally, a project has a name and
comprises a non-empty set of files.

B. The Proposed Reusability Assessment Metric
The reusability of a class is assessed by considering the

factors Understandability (U), Low Complexity (LC) and
Modularity (M). A brief description of how each factor is
calculated is given below:
 U is a value between 0 and 1 that is assessed through the

signification or relevance of names used for a class, fields
and methods (Relevance Of Identifiers - ROI), the rate of
code comments and their correlation with the names used
(Correlation Identifiers Comments - CIC). CIC is
calculated using a similarity metric derived from the
Longest Common Substring, N-Grams and the Levshtein
distance algorithms [27], [28]. CIC is calculated for the
whole file, i.e., classes in the same file have the same CIC.
However, ROI is assessed manually (i.e., expert rating) by
two different experts and the average value is taken.

 LC is a value between 0 and 1 calculated using a Weighted
Cyclomatic Complexity (WCC) value of a class, the
Number of Methods (NM) per class where the threshold 7
is used as per the recommendations in [21], the Depth of
Inheritance Tree (DIT) where 5 is used as a threshold and
the Response For a Class (RFC). WCC is calculated as the
sum of the weights of the individual methods of the class
regarding their cyclomatic complexity and dividing it by
the Number of Methods (NM).

 M in this context is a value between 0 and 1 that is assessed
through measuring the cohesion (through LCOM) and
coupling (through CBO) of the class.

Several other factors were also considered. They include
factors such as the size, customizability and stability. Some
were discarded because they overlap with the factors already

Parameter
name: Name
type: Type

Attribute
Parameter

visibility: Visibility

name: Name
visibility: Visibility
params: Parameter

Constructor

Constructor

return: Type

Method

[Name, Type, CodeLine]
Visibility ::= private | public | protected
Rel ::= aggregated_by | derived_from | associated_with

name: Name
visibility: Visibility
attributes: Attribute
methods: Method

Class

name: Name
lines: 1 CodeLine
classes: 1 Class
rels: (Class × Class) Rel

File

Project

name: Name
files: 1 File

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:12, 2022

616International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
85

7.
pd

f

considered (e.g., size is correlated with criteria such as WCC
and NM) while others were discarded due to the absence of
reliable metrics that can measure them (e.g., stability).

The reusability of a given class R is calculated using:

R =
n

i 1
i × Fi (1)

where Fi are the factors used in the reusability proneness
assessment and i are tuning parameters (i = 1).

LC and M are given more weights than U since the latter
factor was found to be slightly less significant than the former
two factors in measuring the reusability proneness of a class.
Currently, the weight 0.35 is used for M and LC and 0.3 for U.
Finally, M, LC and U are calculated as a weighted average of
the respective metrics used in their calculation.

Fig. 3 The reusability assessment process

C. The Proposed Reusability Assessment Process
The reusability assessment process is initiated by a developer

that requests the selection of the next project from a software
repository. This repository contains a diverse set of randomly
selected OO projects and mobile applications. If there is an
unprocessed project, then its files are selected one by one and
all the required metrics are calculated systematically for each
one of their classes except for ROI that is assessed manually by
the developer(s). Once there are no more projects to process,
the factors U, M and LC are calculated systematically for each
processed class based on the calculated metrics of the previous
step and the weights assigned by the developer. The final step
of the process consists of calculating the reusability proneness
metric R for each class and then raking them accordingly. A
heuristic method was used to find their weights using a set of
classes with known reuse potential. These weights could also

be chosen according to the qualities required by a developer in
search of reusable modules. LC and M are given more weight
than U since the latter factor was found to be slightly less
significant than the former two factors in measuring the
reusability proneness of a class. Fig. 3 gives a graphical
illustration of the reusability assessment process described
above.

IV. EVALUATION
47 projects and applications were randomly selected from

various open-source sites and Android markets such as [35].
They represent various types of applications such as Brain and
Puzzle, Business, Communication, Education, Game, Social,
Lifestyle, Utility, etc. They incorporated a total 809 files
comprising 2247 classes with a total of 120795 Line of Code
(LOC). Table I shows the details of the selected applications.

TABLE I

DETAILS OF THE PROJECTS AND APPLICATIONS USED IN THE EVALUATION
 MAX Min Median Mean StdDev

#Files 86.00 2.00 14.00 17.21 14.47
#Classes 133.00 11.00 35.00 47.81 31.27

Size (LOC) 13676.00 182.00 1344.00 2570.11 2862.24

%Comments 53.83% 0.00% 5.79% 9.33% 10.63%

The relatively large variation (StdDev) in the size and the
percentage of comments is a consequence of the randomness
used in choosing the software projects. One of the projects was
considerably larger than the rest; it included 86 modules and
133 classes. Only 5 projects included less than 20 classes and
only 4 of them included more than 100 classes. Moreover, the
Android applications with no source code led to a null
percentage of code comments as the latter cannot be
decompiled. A converter [34] was used in order to retrieve the
individual class files because these projects had package files
only (i.e. *.apk). It translates a ‘dex’ file (available from the
*.apk file) into a ‘jar’ file that contains the individual classes of
an application. A Java decompiler [36] was then used to obtain
the source code. Hence, for these applications, CIC was not
used to calculate the factor U.

Chidamber and Kemerer Java Metrics [33] and C and C++
Code Counter [32] tools were used to calculate CC, LCOM,
CBO, NM, DIT and RFC. A small prototype tool was
developed to calculate WCC and CIC while ROI was assessed
manually as indicated previously. The results were the
thoroughly analyzed. Fig. 4 shows the reusability of each class
in the studied projects and applications. The results are sorted
for a better analysis.

The overall reusability of the studied classes was good with
an average R of 0.73. Only 396 classes (17.62%) had a
reusability below 0.5 while 212 classes (9.43%) had a
reusability between 0.5 and 0.7. All the remaining 1639 classes
(72.94%) had a reusability greater or equal to 0.7 as shown in
Fig. 5.

The impact of the factors used to measure reusability was
studied by calculating the correlation between them and R.
Classes were again categorized into three categories based on

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:12, 2022

617International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
85

7.
pd

f

their reusability score. Table II shows the overall corresponding
correlation as well as the correlation for the individual
categories.

Fig. 4 The reusability proneness of the evaluated classes

Fig. 5 The distribution of the reusability proneness of the evaluated
classes

TABLE II

CORRELATION BETWEEN THE FACTORS USED AND THE PROPOSED
REUSABILITY METRIC

FACTOR All classes Classes with
R < 0.5

Classes with
0.5 ≤ R < 0.7

Classes with
R ≥ 0.7

M 0.743 0.813 0.275 0.786
LC 0.501 0.698 0.499 0.297

U 0.248 0.299 0.003 0.539

Overall, the factor M has the highest positive correlation to
R followed by LC. There was a relatively poor correlation
between U and R since the original source code (with
comments) was not available for most projects and applications
used in the evaluation. For classes with a low reusability (R <
0.5), the factor M has the highest correlation followed by LC
and then U. For classes with high reusability (R ≥ 0.7), the
factor M has the highest correlation followed by U and then LC.
Finally, for classes with average reusability (0.5 ≤ R < 0.7), the
factor LC has the highest correlation followed by M while U
has almost no correlation at all. Hence:
 The value of M is more correlated to classes with high and

low reusability.
 The value of LC is far more correlated to classes with low

reusability.
 The value of U is relatively correlated to classes with high

reusability.
These results indicate that the factors used to calculate R are

valid reusability proneness predictors as they allow the
identification (and eventually the reuse) of classes with high
reusability while highlighting those with a poor reusability.

In order to study the predictive capability of the proposed
metric, the result obtained for each class was compared to a
value (R*) also between 0 and 1 combining human assessment,
online rating and online reviews. For the latter two parameters,
the value assigned is the same for all the classes of a given
project. For the former parameter, each class was assessed
individually and given a score. Table III shows the results
obtained.

TABLE III

PREDICTIVE CAPABILITY OF THE PROPOSED REUSABILITY METRIC

 All classes Classes with
R < 0.5

Classes with
0.5 ≤ R < 0.7

Classes with
R ≥ 0.7

Correlation
(R, R*) 0.586 0.793 0.003 0.612

Overall, there was a good positive correlation between the

reusability calculated using the proposed metric (R) and the
value (R*) that combines manual expert assessment, online
ratings and reviews. This correlation was excellent for classes
with poor reusability and good for the ones with high
reusability. This supports further the validity of the proposed
metric as it clearly allows discarding classes with poor
reusability and identifying the ones with high reusability
proneness.

The internal validity of the proposed metric is achieved
through the clear correlation that exists between the factors used
and the reusability proneness of a given class. Especially for
classes with high reusability (to be potentially reused) and those
with low reusability (to be excluded from reuse). These factors
were measured using well established and validated metrics,
which support this validity even more. Additionally, manual
intervention was minimized in order to avoid errors in
measurements. This was combined with the cross checking
(twice) of the results obtained automatically. This was aimed at
finding any abnormal values, which is a sign of construct
validity. Finally, even though the number of studied classes in
the empirical investigation is not very substantial, various types
of projects and applications were used and were randomly
selected from various open-source websites. This is sign of
external validity and shows that the results obtained can be
replicated to a larger number of classes from other sources.

V. CONCLUSION AND FUTURE WORK
A framework was proposed in this paper to support reuse in

OO software projects. The framework comprised a process that
uses a proposed reusability metric and a formal foundation to
specify the elements of the reused code and the relationships
between them. The proposed metric combined carefully
selected factors with a strong correlation to reusability
proneness.

The proposed framework was empirically evaluated using a
diverse set of randomly selected open-source projects and
mobile applications. A total of 2247 classes were assessed using
the proposed metric. The overall reusability of these classes was
good with an average R of 0.73. Only 17.62% of them have a
low usability (R < 0.5). Moreover, the factor M was found to be
more correlated to classes with high reusability and those with

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:12, 2022

618International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
85

7.
pd

f

low reusability whereas the factor LC was found to be more
correlated to classes with low reusability. Furthermore, a good
positive correlation between the reusability calculated using the
proposed metric and a value that combines manual expert
assessment, online ratings and reviews was found. This
correlation was strong for classes with high and low reusability.
Hence, the proposed metric R is a valid reusability proneness
predictor as it allows the identification (and eventually the
reuse) of classes with high reusability while highlighting those
with a poor reusability.

REFERENCES
[1] Abebe, S. L., Kessler, F. B., Haiduc, S., Tonella, P. and Marcus, A.

(2011). The Effect of Lexicon Bad Smells on Concept Location in Source
Code, Proceedings of the 11th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM), pp. 125 – 134.

[2] Al-Dallal, J. and Morasca, S. (2014). Predicting object-oriented class
reuse proneness using internal quality attributes,” Empirical Software
Engineering, 19(4), 775-821.

[3] Anquetil, N. and Lethbdige, T. (1998) . Assessing the Relevance of
Identifier Names in Legacy System, In Proc of the Centre for Advanced
Studies on Collaborative Research Conference.

[4] Catal, C. (2011). Software fault prediction: A literature review and current
trends. Expert Systems with Applications, 38(4), 4626-4636.

[5] Chidamber, S.R. and Kemerer, C.F. (1994). A metrics suite for object
oriented design. IEEE Transactions on software engineering, 20(6), 476-
493.

[6] Conforto, E. C., Salum, F., Amaral, D. C., da Silva, S. L., & Magnanini
de Almeida, L. F. (2014). Can agile project management be adopted by
industries other than software development? Project Management
Journal, 45(3), 21–34.

[7] Crussell, J., Gibler, C. and Chen, H. (2013). AnDarwin: Scalable
Detection of Semantically Similar Android Applications, Lecture Notes
in Computer Science, pp. 182-199.

[8] Darcy, D. and Kemerer, C. (2005). OO Metrics in Practice, IEEE
Software, 22(6), 17-19.

[9] Frakes, W. and Kang, K. “Software Reuse Research: Status and Future,”
IEEE Transactions on Software Engineering, vol. 31, no. 7, pp. 529-536,
2005.

[10] Gui, G. and Scott, P. D. (2006). Coupling and cohesion measures for
evaluation of component reusability, Proceedings of the 2006
international workshop on Mining software repositories, pp. 18 – 21.

[11] Gyimothy, T., Ferenc, R. and Siket, I. (2005). Empirical Validation of
Object Oriented Metrics on Open Source Software for Fault Prediction,
IEEE Transactions on Software Engineering, 31(10), 897-910.

[12] Haefliger, S., Von-Krogh, G. and Spaeth, S. “Code Reuse in Open Source
Software,” Management Science, vol. 54, no. 1, pp. 180-193, 2008.

[13] Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B. and
Irlbeck, M. (2011). On the extent and nature of software reuse in open
source Java projects, Proceedings of the 12th international conference on
Top productivity through software reuse, Klaus Schmid (Ed.).
SpringerVerlag, pp. 207-222.

[14] Holmes, R., & Walker, R. J. (2012). Systematizing pragmatic software
reuse. ACM Transactions on Software Engineering and
Methodology, 21(4), 20.

[15] Jansen, S., Brinkkemper, S., Hunink, I., & Demir, C. (2008). Pragmatic
and opportunistic reuse in innovative start-up companies. IEEE
software, 25(6), 42-49.

[16] Khomh, F., Di-Penta, M., Gueheneuc, Y.G. and Antoniol, G. (2012). An
exploratory study of the impact of antipatterns on class change- and fault-
proneness, Empirical Software Engineering, 17(3), 243-275.

[17] Kumar, V., Sharma, A., Kumar, R., & Grover, P. S. (2012). Quality
aspects for component‐based systems: A metrics-based approach.
Software: Practice and Experience, 42(12), 1531-1548.

[18] Land, R., Sundmark, D., Luders, F., Krasteva, I. and Causevic, A. “Reuse
with Software Components - A Survey of Industrial State of Practice,”
Formal Foundations of Reuse and Domain Engineering, Lecture Notes in
Computer Science, vol. 5791, pp. 150-159, 2009.

[19] Lee, Y. and Chang, K. H. (2000). Reusability and maintainability metrics
for object-oriented software,” Proceedings of the ACM-SE 38th annual on
Southeast regional conference, pp.88-94.

[20] Marcus, A., Poshyvanyk, D., & Ferenc, R. (2008). Using the conceptual
cohesion of classes for fault prediction in object-oriented systems. IEEE
Transactions on Software Engineering, 34(2), 287-300.

[21] McConnell, S. (2004). Code Complete: A Practical Handbook of Software
Construction, 2nd Edition. Microsoft Press.

[22] McIlroy, D. “Mass-produced software components,” In Proc 1968 NATO
Conference on Software Engineering, Buxton, J.M., Naur, P., Randell, B.
(eds.), pp. 138-155, Petroceli/Charter, New York, 1969.

[23] Potter, B., Sinclair, J., & Till, D. (1996). Introduction to Formal
Specification and Z. Prentice-Hall.

[24] Radjenović, D., Heričko, M., Torkar, R. and Živkovič, A. (2013).
Software fault prediction metrics: A systematic literature review,
Information and Software Technology, 55(8), 1397-1418.

[25] Taibi, F. (2014). 'Empirical Analysis of the Reusability of Object-
Oriented Program Code in Open-Source Software'. World Academy of
Science, Engineering and Technology, International Journal of Computer
and Information Engineering, 8(1), 118 - 124.

[26] Taibi, F. (2013). 'Reusability of open-source program code: a conceptual
model and empirical investigation’. ACM SIGSOFT Software
Engineering Notes, 38(4), 1-5.

[27] Taibi, F., Alam, M. J. & Abdullah J. (2010). " On Differencing Object-
Oriented Formal Specifications" Journal of Object Technology 9(1), 183-
198.

[28] Taibi, F., Abbou, F. M. & Alam, M. J. (2008). "A Matching Approach for
Object-Oriented Formal Specifications." Journal of Object Technology
7(8), 139-153.

[29] Viennot, N., Garcia, E., & Nieh, J. (2014, June). A measurement study of
Google Plasy. In ACM SIGMETRICS Performance Evaluation Review,
42(1), 221-233.

[30] Washizaki, H., Yamamoto, H. and Fukazawa, Y. (2003). A metrics suite
for measuring reusability of software components, Proceedings of the 9th
Software Metrics Symposium, pp. 211-223.

[31] Wong, W. E., Debroy, V., Golden, R., Xu, X. and Thuraisingham, B.
(2012). Effective Software Fault Localization Using an RBF Neural
Network. IEEE Transactions on Reliability, 61(1), 149-169.

[32] CCCC, http://cccc.sourceforge.net/, November 2022.
[33] CKJM, https://www.spinellis.gr/sw/ckjm/, November 2022.
[34] Dex2jar, https://github.com/pxb1988/dex2jar, November 2022.
[35] Google Play, https://play.google.com/store/apps, November 2022.
[36] JAD, https://varaneckas.com/jad/, November 2022.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:12, 2022

619International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
85

7.
pd

f

