Search results for: fluid viscous dampers.
857 A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid
Authors: P.Kumar
Abstract:
Fluids are used for heat transfer in many engineering equipments. Water, ethylene glycol and propylene glycol are some of the common heat transfer fluids. Over the years, in an attempt to reduce the size of the equipment and/or efficiency of the process, various techniques have been employed to improve the heat transfer rate of these fluids. Surface modification, use of inserts and increased fluid velocity are some examples of heat transfer enhancement techniques. Addition of milli or micro sized particles to the heat transfer fluid is another way of improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. In this work, the heat transfer enhancement using aluminium oxide nanofluid has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach.Keywords: Heat transfer intensification, nanofluid, CFD, friction factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3796856 Estimating the Effect of Fluid in Pressing Process
Authors: A. Movaghar, R. A. Mahdavinejad
Abstract:
To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.
Keywords: Pressing, notch, matrix, flow function, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706855 Heat Transfer Analysis of Rectangular Channel Plate Heat Sink
Authors: Zhang Lei, Liu Min, Liu Botao
Abstract:
In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.Keywords: heat transfer, heat sink, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840854 Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction
Authors: Malik I. Al-Amayreh, Mohammad I. Kilani, Ahmed S. Al-Salaymeh
Abstract:
This work presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting.The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the pressure distributions and Frequency spectrum of the pressure pulsations downstream the valves and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance.These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe.CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.
Keywords: Butterfly Valve Vibration Analysis, Computational Fluid Dynamics, Fluid Flow Circuit Design, Fluid Mechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3818853 Design of Experiment and Computational Fluid Dynamics Used to Optimize Hydrodynamic Characteristics of the Marine Propeller
Authors: Rohit Suryawanshi
Abstract:
In this study, the commercial Computational Fluid Dynamics (CFD), ANSYS-Fluent, has been used to optimize the marine propeller with the design of experiment (DOE) method. At the initial stage, different propeller parameters ware selected for the three different levels. The four characteristics factors are: no. of the blade, camber value, pitch delta & chord at the hub. Then, CAD modelling is performed by considering the selected factor and level. In this investigation, a total of 9 test models are simulated with the Reynolds-Averaged Navier-Stokes (RANS) equations. The standard, realizable
Keywords: Marine propeller, Computational Fluid Dynamics, optimization, DOE, propeller thrust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902852 Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing
Authors: B. Chetti
Abstract:
Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.Keywords: Four-lobe bearings, dynamic characteristics, stabilityanalysis, micropolar fluid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123851 Numerical Simulation of the Liquid-Vapor Interface Evolution with Material Properties
Authors: Kimou Kouadio Prosper, Souleymane Oumtanaga, Tety Pierre, Adou Kablan Jérôme
Abstract:
A satured liquid is warmed until boiling in a parallelepipedic boiler. The heat is supplied in a liquid through the horizontal bottom of the boiler, the other walls being adiabatic. During the process of boiling, the liquid evaporates through its free surface by deforming it. This surface which subdivides the boiler into two regions occupied on both sides by the boiled liquid (broth) and its vapor which surmounts it. The broth occupying the region and its vapor the superior region. A two- fluids model is used to describe the dynamics of the broth, its vapor and their interface. In this model, the broth is treated as a monophasic fluid (homogeneous model) and form with its vapor adiphasic pseudo fluid (two-fluid model). Furthermore, the interface is treated as a zone of mixture characterized by superficial void fraction noted α* . The aim of this article is to describe the dynamics of the interface between the boiled fluid and its vapor within a boiler. The resolution of the problem allowed us to show the evolution of the broth and the level of the liquid.Keywords: Two-fluid models, homogeneous model, interface, averaged equations, Jumps conditions, void fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521850 Experimental Study on Dehumidification Performance of Supersonic Nozzle
Authors: Esam Jassim
Abstract:
Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.
Keywords: Supersonic nozzle, dehumidification, particle separation, geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218849 Unsteady Boundary Layer Flow over a Stretching Sheet in a Micropolar Fluid
Authors: Roslinda Nazar, Anuar Ishak, Ioan Pop
Abstract:
Unsteady boundary layer flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane is studied in this paper. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The transformed unsteady boundary layer equations are solved numerically using the Keller-box method for the whole transient from the initial state to final steady-state flow. Numerical results are obtained for the velocity and microrotation distributions as well as the skin friction coefficient for various values of the material parameter K. It is found that there is a smooth transition from the small-time solution to the large-time solution.Keywords: Boundary layer, micropolar fluid, stretching surface, unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361848 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection
Authors: Vikas Kumar
Abstract:
The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.
Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056847 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact Using Particle Method
Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh
Abstract:
This paper presents a fully Lagrangian coupled Fluid-Structure Interaction (FSI) solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with three different materials such as mild steel, aluminium and tin during water entry. The present simulation results for aluminium are compared with analytical solution derived from the hydrodynamic Wagner model and linear Wan’s theory. And also, the impact pressure and strain on the water entry wedge with three different materials, such as mild steel, aluminium and tin, are simulated and the effects of hydro-elasticity are discussed.Keywords: Fluid-structure interaction (FSI), Moving Particle Semi-implicit (MPS) method, Elastic structure, Incompressible fluid Wedge slamming impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101846 Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization
Authors: Sahba Sadir, M. R. A. Kadir, A. Öchsner, M. N. Harun
Abstract:
Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.
Keywords: Scaffold engineering, Tissue engineering, Cellularstructure, Biomaterial, Computational fluid dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040845 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump
Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh
Abstract:
The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.Keywords: Least Squares, Moving node, Pitching, Spirals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905844 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts
Authors: Punit Kumar, Niraj Kumar
Abstract:
The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259843 Friction Calculation and Simulation of Column Electric Power Steering System
Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo
Abstract:
This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.Keywords: Friction, worm gear, column electric power steering system, Simulink, bearing, electric power steering, EPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244842 Finite Element Modeling of Rotating Mixing of Toothpaste
Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi
Abstract:
The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.
Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257841 Effect of Treadmill Exercise on Fluid Intelligence in Early Adults: Electroencephalogram Study
Authors: Ladda Leungratanamart, Seree Chadcham
Abstract:
Fluid intelligence declines along with age, but it can be developed. For this reason, increasing fluid intelligence in young adults can be possible. This study examined the effects of a two-month treadmill exercise program on fluid intelligence. The researcher designed a treadmill exercise program to promote cardiorespiratory fitness. Thirty-eight healthy voluntary students from the Boromarajonani College of Nursing, Chon Buri were assigned randomly to an exercise group (n=18) and a control group (n=20). The experiment consisted of three sessions: The baseline session consisted of measuring the VO2max, electroencephalogram and behavioral response during performed the Raven Progressive Matrices (RPM) test, a measure of fluid intelligence. For the exercise session, an experimental group exercises using treadmill training at 60 % to 80 % maximum heart rate for 30 mins, three times per week, whereas the control group did not exercise. For the following two sessions, each participant was measured the same as baseline testing. The data were analyzed using the t-test to examine whether there is significant difference between the means of the two groups. The results showed that the mean VO2 max in the experimental group were significantly more than the control group (p<.05), suggesting a two-month treadmill exercise program can improve fluid intelligence. When comparing the behavioral data, it was found that experimental group performed RPM test more accurately and faster than the control group. Neuroelectric data indicated a significant increase in percentages of alpha band ERD (%ERD) at P3 and Pz compared to the pre-exercise condition and the control group. These data suggest that a two-month treadmill exercise program can contribute to the development of cardiorespiratory fitness which influences an increase fluid intelligence. Exercise involved in cortical activation in difference brain areas.
Keywords: Treadmill exercise, fluid intelligence, raven progressive matrices test, %ERD of upper Alpha band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444840 Marangoni Instability in a Fluid Layer with Insoluble Surfactant
Authors: Ainon Syazana Ab. Hamid, Seripah Awang Kechil, Ahmad Sukri Abd. Aziz
Abstract:
The Marangoni convective instability in a horizontal fluid layer with the insoluble surfactant and nondeformable free surface is investigated. The surface tension at the free surface is linearly dependent on the temperature and concentration gradients. At the bottom surface, the temperature conditions of uniform temperature and uniform heat flux are considered. By linear stability theory, the exact analytical solutions for the steady Marangoni convection are derived and the marginal curves are plotted. The effects of surfactant or elasticity number, Lewis number and Biot number on the marginal Marangoni instability are assessed. The surfactant concentration gradients and the heat transfer mechanism at the free surface have stabilizing effects while the Lewis number destabilizes fluid system. The fluid system with uniform temperature condition at the bottom boundary is more stable than the fluid layer that is subjected to uniform heat flux at the bottom boundary.Keywords: Analytical solutions, Marangoni Instability, Nondeformable free surface, Surfactant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832839 Numerical Study of Fluid Mixing in a Grooved Micro-Channel with Wavy Sidewalls
Authors: Yu-Sin Lin, Chih-Yang Wu, Yung-Ching Chu
Abstract:
In this work, we perform numerical simulation of fluid mixing in a floor-grooved micro-channel with wavy sidewalls which may impose perturbation on the helical flow induced by the slanted grooves on the channel floor. The perturbation is caused by separation vortices in the recesses of the wavy-walled channel as the Reynolds number is large enough. The results show that the effects of the wavy sidewalls of the present micromixer on the enhancement of fluid mixing increase with the increase of Reynolds number. The degree of mixing increases with the increase of the corrugation angle, until the angle is greater than 45 degrees. Besides, the pumping pressure of the micromixer increases with the increase of the corrugation angle monotonically. Therefore, we would suggest setting the corrugation angle of the wavy sidewalls to be 45 degrees.
Keywords: Fluid mixing, grooved channel, microfluidics, separation vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227838 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.
Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783837 Project and Experiment-Based Fluid Dynamics Education
Authors: Etsuo Morishita
Abstract:
This paper presents the project and experiment-based fluid dynamics education in Meisei University, a private institution in Tokyo, Japan. We pay attention not only to the basic engineering courses but also to the practical aspect of engineering experience. So, we prepare courses called the Projects from I to VI. The Projects I and II are designed for the first year, III and IV are designated for the second year, V and VI are prepared for the third year, respectively. Each supervisor is responsible for two of these projects every year. When students take the Project V and VI at the third year, we automatically assume that these students will join the lab of the project for the graduation thesis. We would like to show our experience in the Project I in the summer term, 2016. In this project, we introduce a traction flight vehicle called Cat Flyer. This is a kind of a kite towed by a car for example. This is very similar to parasailing, but flight is possible even on the roads. Experiments in mechanical engineering education are also very important, and we would like to explain our course on centrifugal pump, venture, and orifice. Although these are described in detail in the text books of fluid dynamics, it is still crucial to have practical experiments as a student.
Keywords: Aerodynamics, experiment, fluid dynamics, project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490836 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption
Authors: G.Ashwini, A.T.Eswara
Abstract:
This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244835 Industrial Waste Monitoring
Authors: Khairuddin Bin Osman, Ngo Boon Kiat, A. Hamid Bin hamidon, Khairul Azha Bin A. Aziz, Hazli Rafis Bin Abdul Rahman, Mazran Bin Esro
Abstract:
Conventional industrial monitoring systems are tedious, inefficient and the at times integrity of the data is unreliable. The objective of this system is to monitor industrial processes specifically the fluid level which will measure the instantaneous fluid level parameter and respond by text messaging the exact value of the parameter to the user when being enquired by a privileged access user. The development of the embedded program code and the circuit for fluid level measuring are discussed as well. Suggestions for future implementations and efficient remote monitoring works are included.Keywords: Industrial monitoring system, text messaging, embedded programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684834 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script
Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim
Abstract:
A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.
Keywords: Butterfly valve, fluid-structure interaction, automatic CFD analysis, flow coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297833 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes
Authors: Aymen Laadhari, Gábor Székely
Abstract:
This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287832 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid
Authors: Cha’o-Kuang Chen, Ching-Chang Cho
Abstract:
This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.
Keywords: Non-Newtonian fluid, Power-law fluid, Natural convection, Heat transfer enhancement, Cavity, Wavy wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992831 New Insight into Fluid Mechanics of Lorenz Equations
Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao
Abstract:
New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.
Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311830 Generalized Stokes’ Problems for an Incompressible Couple Stress Fluid
Authors: M.Devakar, T.K.V.Iyengar
Abstract:
In this paper, we investigate the generalized Stokes’ problems for an incompressible couple stress fluid. Analytical solution of the governing equations is obtained in Laplace transform domain for each problem. A standard numerical inversion technique is used to invert the Laplace transform of the velocity in each case. The effect of various material parameters on velocity is discussed and the results are presented through graphs. It is observed that, the results are in tune with the observation of V.K.Stokes in connection with the variation of velocity in the flow between two parallel plates when the top one is moving with constant velocity and the bottom one is at rest.
Keywords: Couple stress fluid, Generalized Stokes’ problems, Laplace transform, Numerical inversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3238829 Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid
Authors: Paul Christodoulides, Georgios Florides, Panayiotis Pouloupatis, Vassilios Messaritis, Lazaros Lazari
Abstract:
Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.Keywords: U-tube borehole, energy flow, incompressible fluid, numerical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005828 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor
Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan
Abstract:
The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.
Keywords: Axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218