Search results for: computer networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3095

Search results for: computer networks

2975 Delay-Distribution-Dependent Stability Criteria for BAM Neural Networks with Time-Varying Delays

Authors: J.H. Park, S. Lakshmanan, H.Y. Jung, S.M. Lee

Abstract:

This paper is concerned with the delay-distributiondependent stability criteria for bidirectional associative memory (BAM) neural networks with time-varying delays. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is derived to achieve the globally asymptotically mean square stable of the considered BAM neural networks. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulation is given to demonstrate the usefulness and effectiveness of the proposed results.

Keywords: BAM neural networks, Probabilistic time-varying delays, Stability criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
2974 A New Robust Stability Criterion for Dynamical Neural Networks with Mixed Time Delays

Authors: Guang Zhou, Shouming Zhong

Abstract:

In this paper, we investigate the problem of the existence, uniqueness and global asymptotic stability of the equilibrium point for a class of neural networks, the neutral system has mixed time delays and parameter uncertainties. Under the assumption that the activation functions are globally Lipschitz continuous, we drive a new criterion for the robust stability of a class of neural networks with time delays by utilizing the Lyapunov stability theorems and the Homomorphic mapping theorem. Numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.

Keywords: Neural networks, Delayed systems, Lyapunov function, Stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2973 Safety of Industrial Networks

Authors: P. Vazan, P. Tanuska, M. Kebisek, S. Duchovicova

Abstract:

The paper deals with communication standards for control and production system. The authors formulate the requirements for communication security protection. The paper is focused on application protocols of the industrial networks and their basic classification. The typical attacks are analysed and the safety protection, based on requirements for specific industrial network is suggested and defined in this paper.

Keywords: Application protocols, communication standards, industrial networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2972 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks

Authors: Hazem M. El-Bakry, Nikos Mastorakis

Abstract:

Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
2971 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
2970 A Novel Approach to Positive Almost Periodic Solution of BAM Neural Networks with Time-Varying Delays

Authors: Lili Wang, Meng Hu

Abstract:

In this paper, based on almost periodic functional hull theory and M-matrix theory, some sufficient conditions are established for the existence and uniqueness of positive almost periodic solution for a class of BAM neural networks with time-varying delays. An example is given to illustrate the main results.

Keywords: Delayed BAM neural networks, Hull theorem, Mmatrix, Almost periodic solution, Global exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
2969 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays

Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang

Abstract:

This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.

Keywords: Passivity, Stochastic neural networks, Multiple time delays, Linear matrix inequalities (LMIs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2968 A Further Study on the 4-Ordered Property of Some Chordal Ring Networks

Authors: Shin-Shin Kao, Hsiu-Chunj Pan

Abstract:

Given a graph G. A cycle of G is a sequence of vertices of G such that the first and the last vertices are the same. A hamiltonian cycle of G is a cycle containing all vertices of G. The graph G is k-ordered (resp. k-ordered hamiltonian) if for any sequence of k distinct vertices of G, there exists a cycle (resp. hamiltonian cycle) in G containing these k vertices in the specified order. Obviously, any cycle in a graph is 1-ordered, 2-ordered and 3- ordered. Thus the study of any graph being k-ordered (resp. k-ordered hamiltonian) always starts with k = 4. Most studies about this topic work on graphs with no real applications. To our knowledge, the chordal ring families were the first one utilized as the underlying topology in interconnection networks and shown to be 4-ordered. Furthermore, based on our computer experimental results, it was conjectured that some of them are 4-ordered hamiltonian. In this paper, we intend to give some possible directions in proving the conjecture.

Keywords: Hamiltonian cycle, 4-ordered, Chordal rings, 3-regular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
2967 Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator

Authors: H. Sadjadian , H.D. Taghirad Member, A. Fatehi

Abstract:

In this paper, different approaches to solve the forward kinematics of a three DOF actuator redundant hydraulic parallel manipulator are presented. On the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, which are almost impossible to solve analytically. The proposed methods are using neural networks identification with different structures to solve the problem. The accuracy of the results of each method is analyzed in detail and the advantages and the disadvantages of them in computing the forward kinematic map of the given mechanism is discussed in detail. It is concluded that ANFIS presents the best performance compared to MLP, RBF and PNN networks in this particular application.

Keywords: Forward Kinematics, Neural Networks, Numerical Solution, Parallel Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
2966 Hubs as Catalysts for Geospatial Communication in Kinship Networks

Authors: Sameer Kumar, Jariah Mohd. Jan

Abstract:

Earlier studies in kinship networks have primarily focused on observing the social relationships existing between family relatives. In this study, we pre-identified hubs in the network to investigate if they could play a catalyst role in the transfer of physical information. We conducted a case study of a ceremony performed in one of the families of a small Hindu community – the Uttar Rarhi Kayasthas. Individuals (n = 168) who resided in 11 geographically dispersed regions were contacted through our hub-based representation. We found that using this representation, over 98% of the individuals were successfully contacted within the stipulated period. The network also demonstrated a small-world property, with an average geodesic distance of 3.56.

Keywords: Social Networks, Kinship Networks, Social Network Analysis, Geospatial Communication, Hubs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
2965 Authentication in Multi-Hop Wireless Mesh Networks

Authors: Kaleemullah Khan, Muhammmad Akbar

Abstract:

Wireless Mesh Networks (WMNs) are an emerging technology for last-mile broadband access. In WMNs, similar to ad hoc networks, each user node operates not only as a host but also as a router. User packets are forwarded to and from an Internet-connected gateway in multi-hop fashion. The WMNs can be integrated with other networking technologies i.e. ad hoc networks, to implement a smooth network extension. The meshed topology provides good reliability and scalability, as well as low upfront investments. Despite the recent start-up surge in WMNs, much research remains to be done in standardizing the functional parameters of WMNs to fully exploit their full potential. An edifice of the security concerns of these networks is authentication of a new client joining an integrated ad hoc network and such a scenario will require execution of a multihop authentication technique. Our endeavor in this paper is to introduce a secure authentication technique, with light over-heads that can be conveniently implemented for the ad-hoc nodes forming clients of an integrated WMN, thus facilitating their inter-operability.

Keywords: Multi-Hop WMNs, PANA, EAP-TTLS, Authentication, RADIUS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
2964 Sub-Image Detection Using Fast Neural Processors and Image Decomposition

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.

Keywords: Fast Neural Networks, 2D-FFT, CrossCorrelation, Image decomposition, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
2963 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: Artificial neural networks, fluorescence, data aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
2962 New Stability Analysis for Neural Networks with Time-Varying Delays

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of asymptotically stability for neural networks with time-varying delays.By establishing a suitable Lyapunov-Krasovskii function and several novel sufficient conditions are obtained to guarantee the asymptotically stability of the considered system. Finally,two numerical examples are given to illustrate the effectiveness of the proposed main results.

Keywords: Neural networks, Lyapunov-Krasovskii, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
2961 Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling

Authors: A. Johannet, B. Vayssade, D. Bertin

Abstract:

Neural networks are well known for their ability to model non linear functions, but as statistical methods usually does, they use a no parametric approach thus, a priori knowledge is not obvious to be taken into account no more than the a posteriori knowledge. In order to deal with these problematics, an original way to encode the knowledge inside the architecture is proposed. This method is applied to the problem of the evapotranspiration inside karstic aquifer which is a problem of huge utility in order to deal with water resource.

Keywords: Neural-Networks, Hydrology, Evapotranpiration, Hidden Function Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
2960 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
2959 A Sub-mW Low Noise Amplifier for Wireless Sensor Networks

Authors: Gianluca Cornetta, David J. Santos, Balwant Godara

Abstract:

A 1.2 V, 0.61 mA bias current, low noise amplifier (LNA) suitable for low-power applications in the 2.4 GHz band is presented. Circuit has been implemented, laid out and simulated using a UMC 130 nm RF-CMOS process. The amplifier provides a 13.3 dB power gain a noise figure NF< 2.28 dB and a 1-dB compression point of -15.69 dBm, while dissipating 0.74 mW. Such performance make this design suitable for wireless sensor networks applications such as ZigBee.

Keywords: Current Reuse, IEEE 802.15.4 (ZigBee), Low NoiseAmplifiers, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
2958 A Hypercube Social Feature Extraction and Multipath Routing in Delay Tolerant Networks

Authors: S. Balaji, M. Rajaram, Y. Harold Robinson, E. Golden Julie

Abstract:

Delay Tolerant Networks (DTN) which have sufficient state information include trajectory and contact information, to protect routing efficiency. However, state information is dynamic and hard to obtain without a global and/or long-term collection process. To deal with these problems, the internal social features of each node are introduced in the network to perform the routing process. This type of application is motivated from several human contact networks where people contact each other more frequently if they have more social features in common. Two unique processes were developed for this process; social feature extraction and multipath routing. The routing method then becomes a hypercube–based feature matching process. Furthermore, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.

Keywords: Delay tolerant networks, entropy, human contact networks, hyper cubes, multipath Routing, social features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
2957 Robust Artificial Neural Network Architectures

Authors: A. Schuster

Abstract:

Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.

Keywords: robustness, robust artificial neural networks architectures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
2956 Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

Authors: Walenty Oniszczuk

Abstract:

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Keywords: Blocking, Congestion control, Feedback, Markov chains, Performance evaluation, Threshold-base networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
2955 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology

Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan

Abstract:

Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.

Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
2954 Performance Evaluation of Routing Protocols for High Density Ad Hoc Networks Based on Energy Consumption by GlomoSim Simulator

Authors: E. Ahvar, M. Fathy

Abstract:

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1).Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Keywords: Ad hoc Network, energy consumption, Glomosim, routing protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
2953 Assessing Pre-Service Teachers' Computer PhobiaLevels in terms of Gender and Experience, Turkish Sample

Authors: Ö.F. Ursavas, H. Karal

Abstract:

In this study it is aimed to determine the level of preservice teachers- computer phobia. Whether or not computer phobia meaningfully varies statistically according to gender and computer experience has been tested in the study. The study was performed on 430 pre-service teachers at the Education Faculty in Rize/Turkey. Data in the study were collected through the Computer Phobia Scale consisting of the “Personal Knowledge Questionnaire", “Computer Anxiety Rating Scale", and “Computer Thought Survey". In this study, data were analyzed with statistical processes such as t test, and correlation analysis. According to results of statistical analyses, computer phobia of male pre-service teachers does not statistically vary depending on their gender. Although male preservice teachers have higher computer anxiety scores, they have lower computer thought scores. It was also observed that there is a negative and intensive relation between computer experience and computer anxiety. Meanwhile it was found out that pre-service teachers using computer regularly indicated lower computer anxiety. Obtained results were tried to be discussed in terms of the number of computer classes in the Education Faculty curriculum, hours of computer class and the computer availability of student teachers.

Keywords: Computer phobia, computer anxiety, computer thought, pre-service teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
2952 An Efficient Data Collection Approach for Wireless Sensor Networks

Authors: Hanieh Alipour, Alireza Nemaney Pour

Abstract:

One of the most important applications of wireless sensor networks is data collection. This paper proposes as efficient approach for data collection in wireless sensor networks by introducing Member Forward List. This list includes the nodes with highest priority for forwarding the data. When a node fails or dies, this list is used to select the next node with higher priority. The benefit of this node is that it prevents the algorithm from repeating when a node fails or dies. The results show that Member Forward List decreases power consumption and latency in wireless sensor networks.

Keywords: Data Collection, Wireless Sensor Network, SensorNode, Tree-Based

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
2951 Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper,the exponential passivity criteria for BAM neural networks with time-varying delays is studied.By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments,a novel sufficient condition is established to guarantee the exponential stability of the considered system.Finally,a numerical example is provided to illustrate the usefulness of the proposed main results

Keywords: BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
2950 Investigating Intrusion Detection Systems in MANET and Comparing IDSs for Detecting Misbehaving Nodes

Authors: Marjan Kuchaki Rafsanjani, Ali Movaghar, Faroukh Koroupi

Abstract:

As mobile ad hoc networks (MANET) have different characteristics from wired networks and even from standard wireless networks, there are new challenges related to security issues that need to be addressed. Due to its unique features such as open nature, lack of infrastructure and central management, node mobility and change of dynamic topology, prevention methods from attacks on them are not enough. Therefore intrusion detection is one of the possible ways in recognizing a possible attack before the system could be penetrated. All in all, techniques for intrusion detection in old wireless networks are not suitable for MANET. In this paper, we classify the architecture for Intrusion detection systems that have so far been introduced for MANETs, and then existing intrusion detection techniques in MANET presented and compared. We then indicate important future research directions.

Keywords: Intrusion Detection System(IDS), Misbehavingnodes, Mobile Ad Hoc Network(MANET), Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
2949 Applications of Stable Distributions in Time Series Analysis, Computer Sciences and Financial Markets

Authors: Mohammad Ali Baradaran Ghahfarokhi, Parvin Baradaran Ghahfarokhi

Abstract:

In this paper, first we introduce the stable distribution, stable process and theirs characteristics. The a -stable distribution family has received great interest in the last decade due to its success in modeling data, which are too impulsive to be accommodated by the Gaussian distribution. In the second part, we propose major applications of alpha stable distribution in telecommunication, computer science such as network delays and signal processing and financial markets. At the end, we focus on using stable distribution to estimate measure of risk in stock markets and show simulated data with statistical softwares.

Keywords: stable distribution, SaS, infinite variance, heavy tail networks, VaR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
2948 Developing a Statistical Model for Electromagnetic Environment for Mobile Wireless Networks

Authors: C. Temaneh Nyah

Abstract:

The analysis of electromagnetic environment using deterministic mathematical models is characterized by the impossibility of analyzing a large number of interacting network stations with a priori unknown parameters, and this is characteristic, for example, of mobile wireless communication networks. One of the tasks of the tools used in designing, planning and optimization of mobile wireless network is to carry out simulation of electromagnetic environment based on mathematical modelling methods, including computer experiment, and to estimate its effect on radio communication devices. This paper proposes the development of a statistical model of electromagnetic environment of a mobile wireless communication network by describing the parameters and factors affecting it including the propagation channel and their statistical models.

Keywords: Electromagnetic Environment, Statistical model, Wireless communication network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
2947 Establishing Pairwise Keys Using Key Predistribution Schemes for Sensor Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

Designing cost-efficient, secure network protocols for Wireless Sensor Networks (WSNs) is a challenging problem because sensors are resource-limited wireless devices. Security services such as authentication and improved pairwise key establishment are critical to high efficient networks with sensor nodes. For sensor nodes to correspond securely with each other efficiently, usage of cryptographic techniques is necessary. In this paper, two key predistribution schemes that enable a mobile sink to establish a secure data-communication link, on the fly, with any sensor nodes. The intermediate nodes along the path to the sink are able to verify the authenticity and integrity of the incoming packets using a predicted value of the key generated by the sender’s essential power. The proposed schemes are based on the pairwise key with the mobile sink, our analytical results clearly show that our schemes perform better in terms of network resilience to node capture than existing schemes if used in wireless sensor networks with mobile sinks.

Keywords: Wireless Sensor Networks, predistribution scheme, cryptographic techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
2946 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725