Search results for: Memetic Algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1508

Search results for: Memetic Algorithms

1388 The Performance of the Character-Access on the Checking Phase in String Searching Algorithms

Authors: Mahmoud M. Mhashi

Abstract:

A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed; the results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of comparisons are improved up to 74.0%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 28% to 68% by the new CCCA algorithm

Keywords: Pattern matching, string searching, charactercomparison, character-access, and checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
1387 Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space

Authors: Gishantha Thantulage, Tatiana Kalganova, Manissa Wilson

Abstract:

Ant Colony Algorithms have been applied to difficult combinatorial optimization problems such as the travelling salesman problem and the quadratic assignment problem. In this paper gridbased and random-based ant colony algorithms are proposed for automatic 3D hose routing and their pros and cons are discussed. The algorithm uses the tessellated format for the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speeds up computation. The performance of algorithm has been tested on a number of 3D models.

Keywords: Ant colony algorithm, Automatic hose routing, tessellated format, RAPID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
1386 A Theory in Optimization of Ad-hoc Routing Algorithms

Authors: M. Kargar, F.Fartash, T. Saderi, M. Ebrahimi Dishabi

Abstract:

In this paper optimization of routing in ad-hoc networks is surveyed and a new method for reducing the complexity of routing algorithms is suggested. Using binary matrices for each node in the network and updating it once the routing is done, helps nodes to stop repeating the routing protocols in each data transfer. The algorithm suggested can reduce the complexity of routing to the least amount possible.

Keywords: Ad-hoc Networks, Algorithm, Protocol, RoutingTrain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
1385 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary Algorithms (EAs) have been used widely through evolution theory to discover acceptable solutions that corresponds to challenges such as natural resources management. EAs are also used to solve varied problems in the real world. EAs have been rapidly identified for its ease in handling multiple objective problems. Reservoir operations is a vital and researchable area which has been studied in the last few decades due to the limited nature of water resources that is found mostly in the semi-arid regions of the world. The state of some developing economy that depends on electricity for overall development through hydropower production, a renewable form of energy, is appalling due to water scarcity. This paper presents a review of the applications of evolutionary algorithms to reservoir operation for hydropower production. This review includes the discussion on areas such as genetic algorithm, differential evolution, and reservoir operation. It also identified the research gaps discovered in these areas. The results of this study will be an eye opener for researchers and decision makers to think deeply of the adverse effect of water scarcity and drought towards economic development of a nation. Hence, it becomes imperative to identify evolutionary algorithms that can address this issue which can hamper effective hydropower generation.

Keywords: Evolutionary algorithms, genetic algorithm, hydropower, multi-objective, reservoir operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794
1384 Performance Analysis of OQSMS and MDDR Scheduling Algorithms for IQ Switches

Authors: K. Navaz, Kannan Balasubramanian

Abstract:

Due to the increasing growth of internet users, the emerging applications of multicast are growing day by day and there is a requisite for the design of high-speed switches/routers. Huge amounts of effort have been done into the research area of multicast switch fabric design and algorithms. Different traffic scenarios are the influencing factor which affect the throughput and delay of the switch. The pointer based multicast scheduling algorithms are not performed well under non-uniform traffic conditions. In this work, performance of the switch has been analyzed by applying the advanced multicast scheduling algorithm OQSMS (Optimal Queue Selection Based Multicast Scheduling Algorithm), MDDR (Multicast Due Date Round-Robin Scheduling Algorithm) and MDRR (Multicast Dual Round-Robin Scheduling Algorithm). The results show that OQSMS achieves better switching performance than other algorithms under the uniform, non-uniform and bursty traffic conditions and it estimates optimal queue in each time slot so that it achieves maximum possible throughput.

Keywords: Multicast, Switch, Delay, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
1383 A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems

Authors: Abdel-Reza Hatamlou, Mohammad Reza Meybodi

Abstract:

In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.

Keywords: Constraint Satisfaction Problem, Hybrid SearchAlgorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
1382 A Bi-Objective Model for Location-Allocation Problem within Queuing Framework

Authors: Amirhossein Chambari, Seyed Habib Rahmaty, Vahid Hajipour, Aida Karimi

Abstract:

This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing framework. We formulate this model with two perspectives simultaneously: (i) customers and (ii) service provider. The objectives of the model are to minimize (i) the total expected travelling and waiting time and (ii) the average facility idle-time. This model represents a mixed-integer nonlinear programming problem which belongs to the class of NP-hard problems. In addition, to solve the model, two metaheuristic algorithms including nondominated sorting genetic algorithms (NSGA-II) and non-dominated ranking genetic algorithms (NRGA) are proposed. Besides, to evaluate the performance of the two algorithms some numerical examples are produced and analyzed with some metrics to determine which algorithm works better.

Keywords: Queuing, Location, Bi-objective, NSGA-II, NRGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
1381 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
1380 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: Synthetic gene network, network identification, nonlinear modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
1379 Survey of Key Management Algorithms in WiMAX

Authors: R. Chithra, B. Kalavathi, J. Christy Lavanya

Abstract:

WiMAX is a telecommunications technology and it is specified by the Institute of Electrical and Electronics Engineers Inc., as the IEEE 802.16 standard. The goal of this technology is to provide a wireless data over long distances in a variety of ways. IEEE 802.16 is a recent standard for mobile communication. In this paper, we provide an overview of various key management algorithms to provide security for WiMAX.

Keywords: Broadcast, Rekeying, Scalability, Secrecy, Unicast, WiMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1378 A Study of Touching Characters in Degraded Gurmukhi Text

Authors: M. K. Jindal, G. S. Lehal, R. K. Sharma

Abstract:

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper a study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis.Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text.

Keywords: Character Segmentation, Middle Zone, Touching Characters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1377 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: Biometrics, finger vein recognition, Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
1376 Comparative Study of Ant Colony and Genetic Algorithms for VLSI Circuit Partitioning

Authors: Sandeep Singh Gill, Rajeevan Chandel, Ashwani Chandel

Abstract:

This paper presents a comparative study of Ant Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant colony optimization is an optimization method based on behaviour of social insects [27] whereas Genetic algorithm is an evolutionary optimization technique based on Darwinian Theory of natural evolution and its concept of survival of the fittest [19]. Both the methods are stochastic in nature and have been successfully applied to solve many Non Polynomial hard problems. Results obtained show that Genetic algorithms out perform Ant Colony optimization technique when tested on the VLSI circuit bi-partitioning problem.

Keywords: Partitioning, genetic algorithm, ant colony optimization, non-polynomial hard, netlist, mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
1375 Implementation of Security Algorithms for u-Health Monitoring System

Authors: Jiho Park, Yong-Gyu Lee, Gilwon Yoon

Abstract:

Data security in u-Health system can be an important issue because wireless network is vulnerable to hacking. However, it is not easy to implement a proper security algorithm in an embedded u-health monitoring because of hardware constraints such as low performance, power consumption and limited memory size and etc. To secure data that contain personal and biosignal information, we implemented several security algorithms such as Blowfish, data encryption standard (DES), advanced encryption standard (AES) and Rivest Cipher 4 (RC4) for our u-Health monitoring system and the results were successful. Under the same experimental conditions, we compared these algorithms. RC4 had the fastest execution time. Memory usage was the most efficient for DES. However, considering performance and safety capability, however, we concluded that AES was the most appropriate algorithm for a personal u-Health monitoring system.

Keywords: biosignal, data encryption, security measures, u-health

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1374 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1373 The Negative Effect of Traditional Loops Style on the Performance of Algorithms

Authors: Mahmoud Moh'd Mhashi

Abstract:

A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed using both English text and DNA text with different sizes. The results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Cycle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of total comparisons are improved up to 35%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 22.13% to 42.33% by the new CCCA algorithm.

Keywords: Pattern matching, string searching, charactercomparison, character-access, text type, and checking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
1372 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Authors: A. Boudjemai, A. Zafrane, R. Hocine

Abstract:

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Keywords: Optimization, Gravitational search algorithm, Genetic algorithm, Honeycomb plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
1371 Genetic Combined with a Simplex Algorithm as an Efficient Method for the Detection of a Depressed Ellipsoidal Flaw using the Boundary Element Method

Authors: Clio G. Vossou, Ioannis N. Koukoulis, Christopher G. Provatidis

Abstract:

The present work encounters the solution of the defect identification problem with the use of an evolutionary algorithm combined with a simplex method. In more details, a Matlab implementation of Genetic Algorithms is combined with a Simplex method in order to lead to the successful identification of the defect. The influence of the location and the orientation of the depressed ellipsoidal flaw was investigated as well as the use of different amount of static data in the cost function. The results were evaluated according to the ability of the simplex method to locate the global optimum in each test case. In this way, a clear impression regarding the performance of the novel combination of the optimization algorithms, and the influence of the geometrical parameters of the flaw in defect identification problems was obtained.

Keywords: Defect identification, genetic algorithms, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
1370 Stochastic Learning Algorithms for Modeling Human Category Learning

Authors: Toshihiko Matsuka, James E. Corter

Abstract:

Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.

Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
1369 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1368 Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1367 Application and Limitation of Parallel Modelingin Multidimensional Sequential Pattern

Authors: Mahdi Esmaeili, Mansour Tarafdar

Abstract:

The goal of data mining algorithms is to discover useful information embedded in large databases. One of the most important data mining problems is discovery of frequently occurring patterns in sequential data. In a multidimensional sequence each event depends on more than one dimension. The search space is quite large and the serial algorithms are not scalable for very large datasets. To address this, it is necessary to study scalable parallel implementations of sequence mining algorithms. In this paper, we present a model for multidimensional sequence and describe a parallel algorithm based on data parallelism. Simulation experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.

Keywords: Sequential Patterns, Data Mining, ParallelAlgorithm, Multidimensional Sequence Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
1366 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
1365 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: Classification, data mining, evaluation measures, groundwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
1364 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Şahin Emrah Amrahov, Fatih Aybar, Serhat Doğan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: Rough sets, Decision rules, Rule induction, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
1363 Proposing a Pareto-based Multi-Objective Evolutionary Algorithm to Flexible Job Shop Scheduling Problem

Authors: Seyed Habib A. Rahmati

Abstract:

During last decades, developing multi-objective evolutionary algorithms for optimization problems has found considerable attention. Flexible job shop scheduling problem, as an important scheduling optimization problem, has found this attention too. However, most of the multi-objective algorithms that are developed for this problem use nonprofessional approaches. In another words, most of them combine their objectives and then solve multi-objective problem through single objective approaches. Of course, except some scarce researches that uses Pareto-based algorithms. Therefore, in this paper, a new Pareto-based algorithm called controlled elitism non-dominated sorting genetic algorithm (CENSGA) is proposed for the multi-objective FJSP (MOFJSP). Our considered objectives are makespan, critical machine work load, and total work load of machines. The proposed algorithm is also compared with one the best Pareto-based algorithms of the literature on some multi-objective criteria, statistically.

Keywords: Scheduling, Flexible job shop scheduling problem, controlled elitism non-dominated sorting genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1362 Two Wheels Balancing Robot with Line Following Capability

Authors: Nor Maniha Abdul Ghani, Faradila Naim, Tan Piow Yon

Abstract:

This project focuses on the development of a line follower algorithm for a Two Wheels Balancing Robot. In this project, ATMEGA32 is chosen as the brain board controller to react towards the data received from Balance Processor Chip on the balance board to monitor the changes of the environment through two infra-red distance sensor to solve the inclination angle problem. Hence, the system will immediately restore to the set point (balance position) through the implementation of internal PID algorithms at the balance board. Application of infra-red light sensors with the PID control is vital, in order to develop a smooth line follower robot. As a result of combination between line follower program and internal self balancing algorithms, we are able to develop a dynamically stabilized balancing robot with line follower function.

Keywords: infra-red sensor, PID algorithms, line followerBalancing robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7524
1361 A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan

Authors: R. Gomathi, D. Sharmila

Abstract:

The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.

Keywords: Semantic web, RDF, Query optimization, Nature inspired algorithms, PSO, SA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
1360 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
1359 Simulated Annealing and Genetic Algorithm in Telecommunications Network Planning

Authors: Aleksandar Tsenov

Abstract:

The main goal of this work is to propose a way for combined use of two nontraditional algorithms by solving topological problems on telecommunications concentrator networks. The algorithms suggested are the Simulated Annealing algorithm and the Genetic Algorithm. The Algorithm of Simulated Annealing unifies the well known local search algorithms. In addition - Simulated Annealing allows acceptation of moves in the search space witch lead to decisions with higher cost in order to attempt to overcome any local minima obtained. The Genetic Algorithm is a heuristic approach witch is being used in wide areas of optimization works. In the last years this approach is also widely implemented in Telecommunications Networks Planning. In order to solve less or more complex planning problem it is important to find the most appropriate parameters for initializing the function of the algorithm.

Keywords: Concentrator network, genetic algorithm, simulated annealing, UCPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724