

Abstract—A new algorithm called Character-Comparison to

Character-Access (CCCA) is developed to test the effect of both: 1)
converting character-comparison and number-comparison into
character-access and 2) the starting point of checking on the
performance of the checking operation in string searching. An
experiment is performed; the results are compared with five
algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle.
With the CCCA algorithm, the results suggest that the evaluation
criteria of the average number of comparisons are improved up to
74.0%. Furthermore, the results suggest that the clock time required
by the other algorithms is improved in range from 28% to 68% by the
new CCCA algorithm

Keywords—Pattern matching, string searching, character-
comparison, character-access, and checking.

I. INTRODUCTION
HE problem of exact-match string searching is addressed.
The problem is to search all occurrences of the pattern

P[0…m-1] from the text T[0…n-1], where m is the pattern
length and n is the text length. The pattern and the text are
both strings built on the same alphabet.
 The checking step consists of two phases:
1) A search along the text for a reasonable candidate string,

and
2) A detailed comparison of the candidate against the pattern

to verify the potential match.
Some characters of the candidate string must be selected

carefully in order to avoid the problem of repeated
examination of each character of text when patterns are
partially matched. Intuitively, the fewer the number of
character comparisons in the checking step the better the
algorithm is. After the checking step, whether there is a
mismatch or a complete match of the whole pattern, the
algorithm shifts to the next position. There are different
algorithms that check in different ways if the characters in
Text match with the corresponding characters in Pat. Some of
these algorithms scan the characters of the text:
1) From left to right [1]
2) From right to left [2-3] and by using, the smallest suffix
automation of the reverse pattern [4-6]

Manuscript received September 21, 2005. This work was supported in part
by Mu’tah University.

Mahmoud M. Mhashi is with Mu’tah University, Mu’tah, 61710, Jordan
(phone: +962795116066; e-mail: mhashi@mutah.edu.jo).

3) From the two directions [7-9]
4) By using a static and dynamic statistics to get a good
 comparison order [10-11]
5) By using a good comparison order without using any
 statistics [12]
 Most previous work focused on the improvement of
jumping distance in the skipping step [13-17]. In this paper,
the focus is on increasing the performance of the checking
step. This can be done by reducing the number of character-
comparison and by converting the character-comparison and
number-comparison into character-access.

II. CHECKING COMPONENT IN STRING SEARCHING
ALGORITHMS

A. Forward Checking
 Let’s say the target sequence is an array Text[n] of n
characters (i.e., n is the text length) and the pattern sequence is
the array Pat[m] of m characters (i.e., m is the pattern length).
A naive approach to the problem would be:

void Naive((char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int TextIx, PatIx;
 for (TextIx = 0; TextIx <= TextLen – PatLen + 1;
TextIx++) {
 PatIx = 0;
 while (Text[TextIx + PatIx] == Pat[PatIx++]) {
 if (PatIx == PatLen - 1) {

cout <<"\n Occurence at location "<<TextIx<<"to
location "<< TextIx + PatLen - 1 << endl;

 break;
 }
 }
 }
 return;
}

In the outer loop, Text is searched for occurrences of the
first character in Pat. In the inner loop, a detailed comparison
of the candidate string is made against Pat to verify the
potential match. The algorithm has a worst case time of
O(nm), because in the worst case we may get a match on each
of the n Text characters and at each position we may proceed
to completion m comparisons. Assume that the next following
Text and Pat are given. Then, the Comparison (loop 0) starts
from left to right (Pat[j] = ‘C’) ≠ (Text[i] = ‘A’). Skipping
right one position produces Loop 1. Each character in Pat
matches the corresponding character in Text. There is an
occurrence at location 1 to 3. Executing loop 2, we get (Pat[j]

The Performance of the Character-Access on the
Checking Phase in String Searching Algorithms

Mahmoud M. Mhashi

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007

2832International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

57
51

.p
df

= ‘C’) ≠ (Text[i] = ‘F’). Moving one position ends the
searching process. Thus, to find all the occurrences of Pat in
Text, 5 character-comparisons are needed, in addition to 4
number-comparisons.

 0 1 2 3 4

Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

B. Reverse Checking: Boyer-Moore Algorithm
 The Boyer-Moore algorithm is one example of the reverse
string-searching algorithm. The algorithm scans the
characters of the pattern from right to left beginning with the
most right character. Searching phase needs O(mn) time
complexity; 3n text character comparisons in the worst case
when searching for a non-periodic pattern; O(n / m) best
performance.

void BM(char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int TextIx, PatIx;
 for (TextIx = 0; TextIx <=TextLen – PatLen +1; TextIx++)
{
 PatIx = PatLen - 1;
 while (Text[TextIx + PatIx] == Pat[PatIx--]) {
 if (PatIx < 0) {
cout << "\nOccurence at location "<<TextIx<< " to location "
<<TextIx+PatLen – 1 << endl;
 break;
 }
 }
 }
 return;
}

Example:

 0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process: Loop 0:
Comparison starts from right to left (Pat[j] = ‘X’) ≠ (Text[i]

= ‘F’). Skipping right one position performs Loop 1. Each
character in Pat matches the corresponding character in Text.
There is an occurrence at location 1 to 3. Executing loop 2,
we get (Pat[j] = ‘X’) ≠ (Text[i] = ‘G’). Moving one position
ends the searching process. Therefore, to find all the
occurrences of Pat in Text, 5 character-comparisons are
needed, in addition to 4 number-comparisons.

C. Infix-Suffix-Prefix Checking
Many words have the same prefix, such as “computer”,

“computation”, and “computerized”. Also, many words have
the same suffix, such as “absorbability”, “acceptability”, and
“possibility” [Baalbaki, 1992]. Additionally, sentences might
have the same prefix, such as “Computer systems support

collaborative work”, and “Computer systems support
discussion systems”. Also, sentences might have the same
suffix, such as “Case studies for string searching algorithms”,
and “fast string searching algorithms”.
 It can be noticed from the above examples that there is a
strong dependency between the prefixes and suffixes of the
words or sentences. Such a dependency is the weakest at the
middle. This suggests that it is not profitable to compare the
pattern symbols strictly from left to right or from right to left.
Thus it might be profitable to compare the pattern symbols
from the middle to the boundaries of the pattern. This is
because the probability of finding the mismatch at the middle
is higher than it is at the boundaries. Thus, in the Infix-
Suffix-Prefix algorithm, the comparison will start at the
middle part, then the suffix part followed by the prefix part.

void Inf_Suf_Pref(char *Pat, long int PatLen, char *Text, long
int TextLen) {
 long int TextIx, PatIx, Pref, Pref = PatLen /3;
for (TextIx = 0; TextIx <= TextLen – PatLen+1; TextIx++) {
 for(PatIx = Pref; PatIx <PatLen; PatIx++)
 if(Text[TextIx + PatIx] != Pat[PatIx]) goto next;
 if (PatIx == PatLen) {
 for(PatIx = 0; PatIx < Pref; PatIx++)
 if (Text[TextIx + PatIx] != Pat[PatIx]) goto next;
 cout<<"Occurence at"<<TextIx<<"to"<<TextIx + PatLen -
1 << endl;
 }
 next: continue;
 }
 return;
}

Example:

0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Comparison (Loop 0) starts from the middle (infix part) to
the boundaries (suffix followed by prefix) (Pat[j] = ‘F’) ≠
(Text[i] = ‘C’). Skipping right one position executes Loop 1.
Each character in Pat matches the corresponding character in
Text. There is an occurrence at location 1 to 3. When loop 2
is executed, we get (Pat[j] = ‘F’) ≠ (Text[i] = ‘X’). Moving
one position ends the searching process. So, to find all the
occurrences of Pat in Text, 5 character-comparisons are
needed, in addition to 4 number-comparisons.

D. Selected Characters: Raita’s Algorithm
 Raita designed an algorithm so that at each attempt it first
compares the last character of the pattern Pat with the
rightmost character in Text: if they match, then it compares the
first character of Pat with the leftmost character of Text; if
they match, then it compares the middle character of Pat with
the middle character in Text. Finally if they match, it
compares the other characters from left to right excluding the
first and the last characters in the pattern. It possibly
compares again the middle character.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007

2833International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

57
51

.p
df

void Raita(char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int TextIx, PatIx, mid, mid = PatLen/2;
 for (TextIx = 0;TextIx<TextLen - PatLen+1;TextIx++) {
 if(Text[TextIx + PatLen-1] == Pat[PatLen-1])
// Check last character first
 if(Text[TextIx] == Pat[0]) // Check the first character

if(Text[TextIx + mid] == Pat[mid]) {
// Check the middle character next

 for(PatIx = 1; PatIx<PatLen-1; PatIx++)
 if(Text[TextIx + PatIx] != Pat[PatIx]) goto next;
 cout<<"\nAn occurrence at location "<<TextIx <<" to
"<<TextIx+PatLen-1<<endl;
 }
 next: continue;
 }
 return;
}

Example:

 0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process (Loop 0) starts with the last character in
Pat at (Pat[j] = ‘X’) ≠ (Text[i] = ‘F’). Skipping right one
position produces Loop 1. Each character in Pat matches the
corresponding character in Text. There is an occurrence at
location 1 to 3. Four character comparisons are required to
find this occurrence. Going to loop 2, we get (Pat[j] = ‘X’) ≠
(Text[i] = ‘G’). Moving one position ends the searching
process. Thus, to find all the occurrences of Pat in Text, 6
character comparisons are needed, in addition to 4 number-
comparisons.

E. No Statistics Checking: Circle Algorithm
 The Cycle algorithm is based on the idea that mismatched
characters should be given a high priority in the next checking
operation. In the checking step, there is no fixed comparison
order. The Cycle algorithm treats the pattern as a cycle
logically. At the beginning of search process, the algorithm
applies the Naive principle (i.e. left to right). In each checking
step, it always starts comparing the mismatched character in
the last step. When the comparison successfully turns around
in one checking step, a complete match is found. The
following C code represents the checking step (More details in
[12]).

void Circle((char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int joffset, TextI =joffset=PatLen, PatIx=0, i, k = 0;
while(TextIx<TextLen+1) {
 i = TextIx – joffset ;
 if(Pat[PatIx] == Text[i])
 for(k=2; k<=PatLen; k++) {
 if(++i==TextIx) {
 i=TextIx – PatLen ; PatIx=0;
 }
 else PatIx++;
 if(Pat[PatIx] != Text[i]) break;
 }
 if (k > PatLen) {

 cout << "\n Occurence at location " <<TextIx – PatLen <<"
to "<<TextIx – 1 <<; k = 0;
 }
 joffset=TextIx – i ; TextIx++;
 } // End while
 return;
}

The variable joffset is used to compute the distance between
TextIx from i before entering the checking step. The variable i
is used to indicate the current substring. After the pattern is
shifted to the next position and by using the joffset, the TextIx
should be adjusted to align the PatIx since the pair of
characters pointed by the PatIx and TextIx will be first
compared (i.e., the mismatched character in the previous step).
Example:

0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process: Loop0:
The naïve algorithm is applied first. Comparison starts with

the first character in Pat at (Pat[j] = ‘C’) ≠ (Text[i] = ‘A’).
Skipping right one position executes Loop1. Each character
in Pat matches the corresponding character in Text. There is
an occurrence at location 1 to 3. For this loop only, three
character-comparisons and three number-comparisons are
needed. Going to loop 2, Pat[0] is checked first because the
previous mismatched occurred at that location. We get (Pat[j]
= ‘C’) ≠ (Text[i] = ‘F’). Moving one position ends the
searching process. Therefore, to find all the occurrences of
Pat in Text, 5 character-comparisons are needed, in addition to
6 number comparisons.

III. CHARACTER-COMPARISON TO CHARACTER-ACCESS
(CCCA)

Let Text[0...n-1] and Pat[0...m-1] be arrays of characters.
The array Text is the text and the array Pat is the pattern. The
problem is to find all the exact occurrences of Pat in Text.
The text and the pattern are both words built on the same
characters. A string-matching algorithm is a succession of
checking and skipping. The aim of a good algorithm is to
minimize the work done during each checking and to
maximize the length distance during the skipping.
 Most of the strings matching algorithms preprocess the
pattern before the search phase. The work done during the
preprocessing phase helps the algorithm to maximize the
length of the skips. The preprocessing phase in this new
CCCA algorithm helps in increasing the performance of the
checking step by converting some of the character-comparison
into character-access. The performance of this algorithm
comes from two directions:
1) By detecting mismatch quickly, and
2) By converting a number-comparison and a character-
comparison into a character-access (such as converting
condition of type if(index < n) into a condition of type
if(index)).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007

2834International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

57
51

.p
df

Regarding the first direction, at the beginning of the search,
the first character will be compared first. If any mismatch is
found, then that location will be stored in a variable called
last_mismatch (see line 13 in CCCA algorithm). After the
pattern is shifted to align a new substring, the comparison will
start at location last_mismatch (see line 9 in CCCA
algorithm). If there is a match, then the comparison go from
left to right including the compared character at
last_mismatch. The idea here is that the mismatched character
must be given a high priority in the next checking operation.
After a number of checking steps, this leads to start the
comparison at the rare character or at least frequency character
without counting the frequency of each character in the text.
Regarding the second direction, the following improvements
are made:
1) Programmers, normally, write the for-statement at line (8)
in CCCA with the following style:
 for(TextIx=0;TextIx<TextLen–PatLen+1; TextIx++) {
 This for-statement is changed into the following style:
 for (TextIx = TextLen - PatLen; TextIx; TextIx--) {
In other words, the number comparison of condition type “ if(
TextIx < TextLen – PatLen + 1)” is changed into a character
access of condition type “if(TextIx)”.
2) Again, the programmers write the for-statement at line
(11) in CCCA with the following style:
 for(PatIx = 0; PatIx < PatLen ; PatIx++)
This for-statement is changed into the following style:
 for(PatIx = PatLen – 1; PatIx; PatIx--)
In the same way at line 8, the number comparison “if(TextIx
< TextLen)” is changed into a character access “if(TextIx)”.
3) Looking at lines (14) and (18) in CCCA algorithm, the
statements “goto next” and “next: continue” are found.
Programmers, normally, use the following style:

(13) last_mismatch = PatIx;
(14) break;
(15) }
(16) if(PatIx == PatLen) cout<<"\nAn occurrence at location
"<<TextIx <<" to "<<TextIx+PatLen–1;
(17) }

In other words, programmers use break instead of “goto

next”, but they have to add a condition to test whether there is
an occurrence or not (see line 16 above). Thus, using the new
style reduces the number of conditions.
4) Converting the character-comparison into character-
access: This conversion can be explained by the following
example. Assume that we have the following Pat and Text.

 0 1 2 3 4
Text[i] A C F X G
Pat[j] C F X

To compare the character ‘C’ in Pat with the character ‘A’

in Text at location zero, programmers normally write the
statement if(Text[i] == Pat[j]), where i = j = 0. To convert
this character-comparison into a character-access, a new array

must be declared with alphabet size and initialized by zero,
such as line 4 in CCCA:
 int infix[ALPHABET_SIZE] = {0};
Performing line 6 in CCCA infix[Pat[0]] = infix[‘C’] = 1
sets the location ‘C’ in the array infix by one. Executing the
character-access at line 10, if(infix[Text[TextIx]]), where
TextIx = 0 and Text[0] = ‘A’. This condition is equivalent to
the condition if(infix[‘A’]) = 0, that produces false result (i.e.,
there is a mismatch). Assuming that the character at location
zero in Text is the character ‘C’, then line 10
if(infix[Text[TextIx]])=if(infix[Text[0]])= if(infix[‘C’]) = 1,
produces true result (i.e., there is a match between the
corresponding characters). So, the condition if(Text[i] ==
Pat[j]) of type character-comparison is replaced by the
condition if(infix[Text[TextIx]]) of type character-access.
The condition at line 10 serves two things: 1) converting the
character-comparison to character-access at Pat[0], and 2)
Checking the character at location Pat[0] in advance before
entering the for-statement at line 11. This occurs because the
value of index PatIx becomes zero at the end of the loop at
line 11 and the control will exit the loop without checking the
character at location Pat[0].

(1) void CCCA(char *Pat, long int PatLen, char *Text, long int
TextLen)
(2) {
(3) long int TextIx, PatIx, last_mismatch;
(4) long int infix[ALPHABET_SIZE] = {0};
(5) /* Update infix table according to the first character in Pat */
(6) infix[Pat[0]] = 1;
(7) last_mismatch =0;
(8) for (TextIx = TextLen - PatLen; TextIx; TextIx--) {
(9) if(Text[TextIx+last_mismatch]== Pat[last_mismatch])
(10) if(infix[Text[TextIx]]) {
(11) for(PatIx = PatLen – 1; PatIx; PatIx--)
(12) if(Text[TextIx + PatIx] != Pat[PatIx]) {
(13) last_mismatch = PatIx;
(14) goto next;
(15) }
(16) cout<<"\nAn occurrence at location "<<TextIx <<" to
"<<TextIx+PatLen–1<<endl;
(17) }
(18) next: continue;
(19) }
(20) return;
(21) }

 Example:

0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process: Loop 0:
The Naïve algorithm is applied first. Comparison starts

with the first character in Pat at (Pat[j] = ‘C’) ≠ (Text[i] =
‘A’). Skipping right one position produces Loop 1. Because
the mismatch occurred at location zero in the previous check,
comparison starts with the first character in Pat at (Pat[j] =
‘C’) == (Text[i] = ‘C’). There is a match between the two
corresponding characters. The character ‘C’ in Text will be

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007

2835International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

57
51

.p
df

compared again with the corresponding character ‘C’ in Pat
through the character-access test if(infix[Text[TextIx]]) =
if(infix[Text[1]]) = if(infix[‘C’]) = 1, produces true result
(i.e., there is a match). The character at location zero in Pat
will be checked only twice, if the mismatch occurred at Pat[0]
in the previous check and there is a match at the current check.
Otherwise it will be checked once. Each character in Pat
matches the corresponding character in Text. There is an
occurrence at location 1 to 3. For this loop only, three
character-comparisons, one character-access, and one number-
comparison are needed. Going to loop 2, Pat[0] is checked
first because the previous mismatched occurred at that
location. We get (Pat[j] = ‘C’) ≠ (Text[i] = ‘F’). Moving one
position ends the searching process. Thus, to find all the
occurrences of Pat in Text, 5 character-comparisons are
needed, in addition to one character-access and 4 number
comparisons.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this experiment, the seven algorithms Naive, BM,
Inf_suf_Pref, Raita, Circle, and the new algorithm CCCA
were implemented and compared on English text with a size
more than two mega characters (exactly 2,006,655 characters).
A program was designed in C++ to select randomly 3000
patterns. The pattern length ranges from 3 to 93 characters.
The average number of occurrences ranges from 1 to 1158.
The cost of the searching process to find all the occurrences of
the different patterns in each group in Text is measured by
finding:
1) The average number of first checking,
2) The average number of second checking, and
3) The search clock time.
 The results of the experiment are presented in Table I and
in Table II. The average number of checks is presented in
Table I. The average number of 1st checks ranges from
5,599,507,298 (algorithm no. 3) to 5,893,025,734 (algorithm
no. 5). Intuitively, the higher the average number of checks in
the first check at the checking step, the better the algorithm is.
One can notice that the average number of checks by using the
new CCCA algorithm is higher than the average by each one
of the other algorithms, except the Circle algorithm (number
5). Furthermore, the average number of second checks by the
Circle algorithm is smaller than it is by using CCCA.
However, looking at Table II, the time required to find all the
occurrences of Pat in Text by using Circle and CCCA is
47.985 sec and 30.531 sec, respectively. In other words, by
using CCCA, the time required by Circle is reduced by
57.17%. This result is expected because the Circle algorithm
needs more character comparisons than CCCA to find all the
occurrences of Pat in Text. At each check, the circle
algorithm needs one number-comparison at each time the
index TextIx and PatIx adjusted to point to the next pair of
characters to examine whether the PatIx reaches the end of the
pattern. If the check is true, the PatIx will be turned back to
the first character in the pattern.

Table I also presents the average number of the second
checks. It ranges from (108,203,599) to (383,040,878). One
can notice that the average number of checks by using CCCA
is (See section 2.5) smaller than the average number of checks
by the other algorithms, except the Circle algorithm.
Intuitively, the smaller the average number of the second
checks, the better the algorithm is. In other words, the number
of comparisons required by an algorithm to find all the
occurrences of Pat in Text in the second check equals the
average number of second checks multiplied by two. Thus
increasing the average number of first checks leads to
decreasing the average number of second checks. Of course,
this leads to decreasing the average number of comparisons
and in turn reduces the time required to find the occurrences
of Pat in Text.
 Table II presents the clock time required to find all the
occurrences of all patterns in Text. The clock time includes
the time required for reading and pre-processing the patterns.
The time ranges from 30.531 seconds (CCCA algorithm 6) to
51.187 seconds (BM algorithm 2). By using the new
algorithm CCCA, the clock time required by the other
algorithms are reduced by 28.1% (Raita’s algorithm) to
67.66% (algorithm BM).

V. CONCLUSIONS
 A new algorithm Character-Comparison to Character-
Access (CCCA) is developed and compared with six
algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and
Circle. The CCCA algorithm uses both the character-access
and the character-comparison tests at the checking step while
the rest of algorithms use only the character-comparison. An
experiment was performed to evaluate the new algorithm
CCCA. There are many different criteria used to compare
between the different algorithms, including:
1) The average number of comparisons for the first check,
2) The average number of comparisons for the second check,
3) The running time.

In comparison between CCCA and the rest of algorithms
and according to the experiment, we have the following
results:
1) The average number of first check and the average number

of second check required by Naive, BM, Inf_Suf_Pref,
Raita, and Circle are improved by CCCA in the following
ranges from –2.22% (Circle algorithm) to 2.87%
(Inf_suf_Pref) and from –54.36% to 61.56% (see Table I)

2) The clock time required by the algorithms Naive, BM,
Inf_Suf_Pref, Raita, and Circle are improved by CCCA in the
range of percentage from 28.1% (Raita) to 67.66% (BM) (see
Table II).

From these results, one can notice that the CCCA algorithm
gains its performance from more than one direction, including:
1) Converting character-comparison into character-access:
The CCCA converts the first condition of Pat from character-
comparison (Text[TextIx] == Pat[PatIx]) into character access
(if(infix[Text[TextIx]]) with a reasonable overhead cost (see
section 3).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007

2836International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

57
51

.p
df

TABLE I
A COMPARISON IS PRESENTED BETWEEN CCCA AND THE REST OF ALGORITHMS INCLUDING, NAÏVE, BM, INF_SUF_PREF, RAITA, AND CIRCLE, IN TERMS OF THE

AVERAGE NUMBER OF FIRST AND SECOND CHECKING AND THE PERCENTAGE OF IMPROVEMENTS

Algorithm
No.

Algorithm name

Average number

of 1st check

Average number of

2nd chek

Improvement of
CCCA vs. other
algorithms in 1st

check

Improvement of
CCCA vs. other
algorithms in 2nd

check
1 Naive 5,606,801,852 370,011,660 2.75% 56.06%
2 BM 5,605,389,051 371,458,278 2.78% 56.67%
3 Inf_suf_Pref 5,599,507,298 377,673,491 2.87% 59.29%
4 Raita 5,605,392,051 383,040,878 2.77% 61.56%
5 Circle 5,893,025,734 108,203,599 - 2.22% - 54.36%
6 CCCA 5,765,222,841 237,096,395 0.00% 0.00%

TABLE II

A COMPARISON BETWEEN CCCA AND THE REST OF ALGORITHMS INCLUDING, NAÏVE, BM, INF_SUF_PREF, RAITA, AND CIRCLE IN TERMS OF THE CLOCK TIME
REQUIRED TO FIND THE OCCURRENCES OF 3000 PATTERNS IN TWO MEGA BYTES OF TEXT AND THE PERCENTAGE OF IMPROVEMENTS

Algorithm
No.

Algorithm name

Clock time in Seconds (Sec)

Improvement of CCCA vs.
other algorithms

1 Naïve 43.984 Sec. 44.06%
2 BM 51.187 Sec. 67.66%
3 Inf_suf_Pref 49.860 Sec. 63.31%
4 Raita 39.110 Sec. 28.10%
5 Circle 47.985 Sec. 57.17%
6 CCCA 30.531 Sec. 0.00%

2) Character-access vs. number-comparison: The CCCA
uses the condition type character-access (if(i)) (needs 40%
less time to be executed than the time needed by any other
type of conditions) in the main loops rather than using the
number-comparison (if (TextIx < TextLen)).
3) The starting point of checking: The CCCA algorithm
starts the comparison at the latest mismatch in the previous
checking. This increases the probability of finding the
mismatch faster if there is a mismatch. Finding the mismatch
faster decreases the number of comparisons required to find
the Pat in Text.

As a result, during the checking operation, converting the
conditions of type character-comparison and number-
comparison into character-access affects on the time required
to find the occurrences of Pat in Text. Furthermore, starting
the checking at the latest mismatch in the previous step
reduces the number of comparisons.

The algorithm CCCA in this paper concentrates on the
performance of the checking operation. The Algorithm
Multiple Reference Characters Algorithm (MRCA)
concentrates on the performance of the skipping operation.
One might look for an algorithm that concentrates on the
performance of both operations checking and skipping (i.e.,
all in one). Such work needs to be investigated in further
studies.

 REFERENCES
[1] D. E. Knuth, J. H. Morris, and V. R Pratt., Fast pattern matching in

strings, SIAM J. Comput. Vol. 6, no. 2, pp. 323-350, 1977.
[2] RS. Boyer, and JS. Moore, A fast string searching algorithm.

Communications of the ACM Vol. 20, no. 10, pp. 762-772, 1977.

[3] A. Apostolico, and R. R.Giancarlo, “The Boyer-Moore-Galil string
searching strategies revisited”, SIAM J. Comput. Vol. 15, no. 1, pp. 98-
105, 1986.

[4] G. De, V. Smit, A comparison of three string matching algorithms,
Software-Practice and Experience Vol. 12, pp. 57-66, 1982.

[5] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, J.
Seiferas, The smallest automaton recognizing the subwords of a text,
Theoret. Comput. Sci., Vol. 40, pp. 31-55, 1985.

[6] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci.,
Vol. 45, pp. 63-86, 1986.

[7] M. Crochemore, D. Perrin, Two-way string-matching, J. ACM, Vol. 38,
pp. 651-675, 1991.

[8] L. Colussi, Correctness and efficiency of the pattern matching
algorithms, Information and Computation, Vol. 95, pp. 225-251, 1991.

[9] Z. Galil, R. Giancarlo, On the exact complexity of string matching:
upper bounds, SIAM J. Comput. Vol. 21, pp. 407-437, 1992.

[10] P. D. Smith, Experiments with a very fast substring search algorithm,
Software-Practice and Experience Vol. 21, no. 10, pp. 1065-1074, 1991.

[11] D. M. Sunday, A very fast substring search algorithm, Communications
of the ACM Vol. 33, no. 8, pp. 132-142, 1990.

[12] Z. Liu, X. Du, N. Ishii, An improved adaptive string searching
algorithm, Software–Practice and Experience Vol. 28, no. 2, pp. 191-
198, 1998.

[13] P. Fenwick, Fast string matching for multiple searches, Software–
Practice and Experience Vol. 31, no. 9, pp. 815-833, 2001.

[14] M. Mhashi, A Fast String Matching Algorithm using Double-Length
Skip Distances. Dirasat Journal, University of Jordan, Jordan Vol. 30,
no. 1, pp. 84-92, 2003.

[15] P. Fenwick, Some perils of performance prediction: a case study on
pattern matching. Software–Practice and Experience Vol. 31, no. 9, pp.
835-843, 2001.

[16] A. Al-jaber, M. Mhashi, A modified double skip algorithm in string
searching, AMSE(Association for the advancement of modelling &
Simulation Techniques in Enterprises) Periodicals Vol.8, no. 4, pp. 1-16,
2003.

[17] M. Mhashi, The effect of multiple reference characters on detecting
matches in string searching algorithms, to appear in Software–Practice
and Experience 2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007

2837International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

57
51

.p
df

