Search results for: Integral differential equations
1864 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem
Authors: Adil AL-Rammahi
Abstract:
In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.
Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24901863 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations
Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi
Abstract:
An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .
Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821862 Positive Solutions for Three-Point Boundary Value Problems of Third-Order Nonlinear Singular Differential Equations in Banach Space
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for singular differential equation in Banach space, which improved and generalize the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731861 Mean Square Stability of Impulsive Stochastic Delay Differential Equations with Markovian Switching and Poisson Jumps
Authors: Dezhi Liu
Abstract:
In the paper, based on stochastic analysis theory and Lyapunov functional method, we discuss the mean square stability of impulsive stochastic delay differential equations with markovian switching and poisson jumps, and the sufficient conditions of mean square stability have been obtained. One example illustrates the main results. Furthermore, some well-known results are improved and generalized in the remarks.
Keywords: Impulsive, stochastic, delay, Markovian switching, Poisson jumps, mean square stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15621860 Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems
Authors: N. Senu, I. A. Kasim, F. Ismail, N. Bachok
Abstract:
In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size.
Keywords: Dissipation, Oscillatory solutions, Phase-lag, Runge- Kutta methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19061859 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation
Authors: Z. El Felsoufi, L. Azrar
Abstract:
This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.
Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211858 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations
Authors: J.S.C. Prentice
Abstract:
The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.
Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13191857 Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation
Authors: Leila Vafajoo, Farhad Khorasheh, Mehrnoosh Hamzezadeh Nakhjavani, Moslem Fattahi
Abstract:
In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.Keywords: Dehydrogenation, Pt-Sn/Al2O3 Catalyst, Modeling, Nelder-Mead, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27461856 A Hybrid Differential Transform Approach for Laser Heating of a Double-Layered Thin Film
Authors: Cheng-Ying Lo
Abstract:
This paper adopted the hybrid differential transform approach for studying heat transfer problems in a gold/chromium thin film with an ultra-short-pulsed laser beam projecting on the gold side. The physical system, formulated based on the hyperbolic two-step heat transfer model, covers three characteristics: (i) coupling effects between the electron/lattice systems, (ii) thermal wave propagation in metals, and (iii) radiation effects along the interface. The differential transform method is used to transfer the governing equations in the time domain into the spectrum equations, which is further discretized in the space domain by the finite difference method. The results, obtained through a recursive process, show that the electron temperature in the gold film can rise up to several thousand degrees before its electron/lattice systems reach equilibrium at only several hundred degrees. The electron and lattice temperatures in the chromium film are much lower than those in the gold film.
Keywords: Differential transform, hyperbolic heat transfer, thin film, ultrashort-pulsed laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911855 Direct Block Backward Differentiation Formulas for Solving Second Order Ordinary Differential Equations
Authors: Zarina Bibi Ibrahim, Mohamed Suleiman, Khairil Iskandar Othman
Abstract:
In this paper, a direct method based on variable step size Block Backward Differentiation Formula which is referred as BBDF2 for solving second order Ordinary Differential Equations (ODEs) is developed. The advantages of the BBDF2 method over the corresponding sequential variable step variable order Backward Differentiation Formula (BDFVS) when used to solve the same problem as a first order system are pointed out. Numerical results are given to validate the method.Keywords: Backward Differentiation Formula, block, secondorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271854 A New Splitting H1-Galerkin Mixed Method for Pseudo-hyperbolic Equations
Authors: Yang Liu, Jinfeng Wang, Hong Li, Wei Gao, Siriguleng He
Abstract:
A new numerical scheme based on the H1-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. And the proposed method dose not requires the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.
Keywords: Pseudo-hyperbolic equations, splitting system, H1-Galerkin mixed method, error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031853 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature
Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard
Abstract:
The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.
Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331852 Positive Solutions for Boundary Value Problems of Fourth-Order Nonlinear Singular Differential Equations in Banach Space
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special non-empty closed convex set and utilizing M¨onch fixed point theory, we investigate the existence of solution for a class of fourth-order singular differential equation in Banach space, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761851 Constructing Approximate and Exact Solutions for Boussinesq Equations using Homotopy Perturbation Padé Technique
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev
Abstract:
Based on the homotopy perturbation method (HPM) and Padé approximants (PA), approximate and exact solutions are obtained for cubic Boussinesq and modified Boussinesq equations. The obtained solutions contain solitary waves, rational solutions. HPM is used for analytic treatment to those equations and PA for increasing the convergence region of the HPM analytical solution. The results reveal that the HPM with the enhancement of PA is a very effective, convenient and quite accurate to such types of partial differential equations.Keywords: Homotopy perturbation method, Padé approximants, cubic Boussinesq equation, modified Boussinesq equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45781850 The Solution of the Direct Problem of Electrical Prospecting with Direct Current under Conditions of Ground Surface Relief
Authors: Balgaisha Mukanova, Tolkyn Mirgalikyzy
Abstract:
Theory of interpretation of electromagnetic fields studied in the electrical prospecting with direct current is mainly developed for the case of a horizontal surface observation. However in practice we often have to work in difficult terrain surface. Conducting interpretation without the influence of topography can cause non-existent anomalies on sections. This raises the problem of studying the impact of different shapes of ground surface relief on the results of electrical prospecting's research. This research examines the numerical solutions of the direct problem of electrical prospecting for two-dimensional and three-dimensional media, taking into account the terrain. The problem is solved using the method of integral equations. The density of secondary currents on the relief surface is obtained.
Keywords: Ground surface relief, method of integral equations, numerical method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241849 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation
Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu
Abstract:
In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.
Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11621848 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9161847 A Study on Stochastic Integral Associated with Catastrophes
Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan
Abstract:
We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t).
Keywords: Stochastic integrals, single–server queue model, catastrophes, busy period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8001846 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm
Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar
Abstract:
This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.Keywords: Load Frequency Control, Fuzzy-PID controller, Type 2 fuzzy system, Harmony Search algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361845 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading
Authors: Eda Gök
Abstract:
Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.
Keywords: Flexural loading, non-local continuum mechanics, Peridynamic theory, solid structures, tensile loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12161844 RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates
Authors: Jeeoot Singh, Sandeep Singh, K. K. Shukla
Abstract:
The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.Keywords: Composite plates, Meshfree method, free vibration, Shear deformation, RBFs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21261843 Investigation of Stability of Functionally Graded Material when Encountering Periodic Loading
Authors: M. Amiri
Abstract:
In this work, functionally graded materials (FGMs), subjected to loading, which varies with time has been studied. The material properties of FGM are changing through the thickness of material as power law distribution. The conical shells have been chosen for this study so in the first step capability equations for FGM have been obtained. With Galerkin method, these equations have been replaced with time dependant differential equations with variable coefficient. These equations have solved for different initial conditions with variation methods. Important parameters in loading conditions are semi-vertex angle, external pressure and material properties. Results validation has been done by comparison between with those in previous studies of other researchers.
Keywords: Impulsive semi-vertex angle, loading, functionally graded materials, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12031842 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.
Keywords: Dual solutions, heat transfer, mixed convection, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24821841 Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach
Authors: R. Bhargava, Sonam Singh
Abstract:
In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.Keywords: EFGM, MHD, Oscillatory stretching sheet, Unsteady, Viscoelastic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18991840 Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation
Authors: O. A. Akinfenwa, N.M. Yao, S. N. Jator
Abstract:
In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for the stiff ordinary differential equations. The order of accuracy and stability of the block method is discussed and its accuracy is established numerically.Keywords: Collocation and Interpolation, Continuous HybridBlock Formulae, Off-Step Points, Stability, Stiff ODEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20991839 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow
Authors: Vai Kuong Sin
Abstract:
Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.
Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15351838 Active Tendons for Seismic Control of Buildings
Authors: S. M. Nigdeli, M. H. Boduroglu
Abstract:
In this study, active tendons with Proportional Integral Derivation type controllers were applied to a SDOF and a MDOF building model. Physical models of buildings were constituted with virtual springs, dampers and rigid masses. After that, equations of motion of all degrees of freedoms were obtained. Matlab Simulink was utilized to obtain the block diagrams for these equations of motion. Parameters for controller actions were found by using a trial method. After earthquake acceleration data were applied to the systems, building characteristics such as displacements, velocities, accelerations and transfer functions were analyzed for all degrees of freedoms. Comparisons on displacement vs. time, velocity vs. time, acceleration vs. time and transfer function (Db) vs. frequency (Hz) were made for uncontrolled and controlled buildings. The results show that the method seems feasible.Keywords: Active Tendons, Proportional Integral DerivationType Controllers, SDOF, MDOF, Earthquake, Building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33281837 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method
Authors: Kourosh Parand, Jamal Amani Rad
Abstract:
In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.
Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911836 The Global Stability Using Lyapunov Function
Authors: R. Kongnuy, E. Naowanich, T. Kruehong
Abstract:
An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21501835 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium
Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.Keywords: Keller-box, MHD boundary layer flow, permeability stretching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981