Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30302
Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Authors: N. Bachok, N. Senu, F. Ismail, I. A. Kasim


In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size.

Keywords: dissipation, oscillatory solutions, phase-lag, Runge- Kutta methods

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577


[1] J.R. Cash, A.D. Raptis, T.E. Simos, "A sixth-order exponentially fitted method for the numerical solution of the radial Schrodinger equation,”J. Comput. Phys.,vol. 91, pp. 413–423, 1990.
[2] T.E. Simos, "A four-step method for the numerical solution of the Schrodinger equation,” J. Comput. Appl. Math.,vol. 30,pp. 251–255, 1990.
[3] G. Avdelas, T.E. Simos, "Embedded methods for the numerical solution of the Schrodinger equation,” Comput. Math.Appl.,vol. 31, pp. 85–102, 1996.
[4] G. Avdelas, T.E. Simos, "A generator of high-order embedded P-stable methods for the numerical solution of the Schrodinger equation,”J. Comput. Appl. Math.,vol. 72, pp. 345–358, 1996.
[5] T.E. Simos, "P-stable exponentially-fitted methods for the numerical integration of the Schrodinger equation,” J. Comput. Phys.,vol. 148,no. 2, pp. 305 –321, 1999.
[6] S.Z. Ahmad, F. Ismail, N. Senu, & M. Suleiman, "Zero-Dissipative Phase-Fitted Hybrid Methods for Solving Oscillatory Second Order Ordinary Differential Equations,” Applied Mathematics and Computation, vol. 219,pp. 10096–10104, 2013.
[7] S.Z. Ahmad, F. Ismail, N. Senu, & M. Suleiman, "Semi Implicit Hybrid Methods with Higher Order Dispersion for Solving Oscillatory Problems,” Abstract and Applied Analysis, vol. 2013, Article ID 136961, 10 pages, 2013.
[8] N.Senu, M. Suleiman, F. Ismail, M. Othman, "A Singly Diagonally Implicit Runge-Kutta-Nystrom Method for Solving Oscillatory Problems,” IAENG International Journal of Applied Mathematics, vol. 41, no. 2, pp.155–161, 2011.
[9] N.Senu, M. Suleiman, F. Ismail, M. Othman, "A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs,”WSEAS Transactions On Mathematics, vol 9, no. 9, pp. 679–688, 2010.
[10] N. Senu, M. Suleiman, F. Ismail, M. Othman, "A Zero-dissipative Runge-Kutta-Nystrom Method with Minimal Phase-lag, (2010),”Mathematical Problems in Engineering, vol. 2010 (2010), Article ID 591341, 15 pages, 2010.
[11] N.Senu, M. Suleiman, F. Ismail dan M. Othman, "KaedahPasangan 4(3) Runge-Kutta-Nystrom untuk Masalah Nilai Awal Berkala,” Sains Malaysiana, vol. 39, no. 4, pp. 639–646, 2010.
[12] L. Brusa, L. Nigro, "A one-step method for direct integration of structural dynamic equations,”Int. J. Numer. Methods Engin., vol. 15, pp. 685–699, 1980.
[13] P. J. van der Houwen and B. P. Sommeijer, "Explicit Runge-Kutta(- Nyström) methods with reduced phase errors for computing oscillating solutions,” SIAM J. Numer. Anal., vol. 24, no. 3, pp. 595–617, 1987.
[14] N. Senu, M. Suleiman, F. Ismail. "An embedded explicit Runge-Kutta- Nyström method for solving oscillatory problems,”Phys. Scr.,vol. 80, no. 1, pages 015005, 2009.
[15] H. Van der Vyver, "A symplecticRunge-Kutta-Nyström method with minimal phase-lag,” Physics Letters A,vol. 367, pp. 16–24, 2007.
[16] T.E. Simos, "A Runge-Kutta-Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution,” Comput. Math. Appl., vol. 25, pp. 95–101, 1993.
[17] J.R. Dormand, Numerical Methods for Differential Equations, CRC Press, Inc, Florida, 1996.
[18] G. Papadeorgiou, Ch. Tsitourus, and S.N Papakostas, "Runge-Kutta Pairs for Periodic Initial Value Problem,”Computing,vol. 1,pp. 151–163, 1993.