Search results for: Fuzzy membership functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1992

Search results for: Fuzzy membership functions

1872 Level of Concentration in Banking Markets and Length of EU Membership

Authors: Ivan Pavic, Fran Galetic, Tomislava Pavic Kramaric

Abstract:

The purpose of this article is to analyze the degree of concentration in the banking market in EU member states as well as to determine the impact of the length of EU membership on the degree of concentration. In that sense several analysis were conducted, specifically, panel analysis, calculation of correlation coefficient and regression analysis of the impact of the length of EU membership on the degree of concentration. Panel analysis was conducted to determine whether there is a similar trend of concentration in three groups of countries - countries with a low, moderate and high level of concentration. The conducted panel analysis showed that in EU countries with a moderate level of concentration, the level of concentration decreases. The calculation of correlation showed that, to some extent, with other influential factors, the length of EU membership negatively affects the market concentration of the banking market. Using the regression analysis for investigation of the influence of the length of EU membership on the level of concentration in the banking sector in a particular country, the results reveal that there is a negative effect of the length in EU membership on market concentration, although it is not significantly influential variable.

Keywords: Banking sector, concentration, EU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
1871 Fuzzy Sequential Algorithm for Discrimination and Decision Maker in Sporting Events

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

Events discrimination and decision maker in sport field are the subject of many interesting studies in computer vision and artificial intelligence. A large volume of research has been conducted for automatic semantic event detection and summarization of sports videos. Indeed the results of these researches have a very significant contribution, as well to television broadcasts as to the football teams, since the result of sporting event can be reflected on the economic field. In this paper, we propose a novel fuzzy sequential technique which lead to discriminate events and specify the technico-tactics on going the game, nor the fuzzy system or the sequential one, may be able to respond to the asked question, in fact fuzzy process is not sufficient, it does not respect the chronological order according the time of various events, similarly the sequential process needs flexibility about the parameters used in this study, it may affect a membership degree of each parameter on the one hand and respect the sequencing of events for each frame on the other hand. Indeed this technique describes special events such as dribbling, headings, short sprints, rapid acceleration or deceleration, turning, jumping, kicking, ball occupation, and tackling according velocity vectors of the two players and the ball direction.

Keywords: Sequential process, Event detection, Soccer videos analysis, Fuzzy process, Spatio-temporal parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1870 Neuro-Fuzzy System for Equalization Channel Distortion

Authors: Rahib H. Abiyev

Abstract:

In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.

Keywords: Neuro-fuzzy system, noise equalization, neuro-fuzzy equalizer, neural system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1869 Using Fuzzy Numbers in Heavy Aggregation Operators

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We consider different types of aggregation operators such as the heavy ordered weighted averaging (HOWA) operator and the fuzzy ordered weighted averaging (FOWA) operator. We introduce a new extension of the OWA operator called the fuzzy heavy ordered weighted averaging (FHOWA) operator. The main characteristic of this aggregation operator is that it deals with uncertain information represented in the form of fuzzy numbers (FN) in the HOWA operator. We develop the basic concepts of this operator and study some of its properties. We also develop a wide range of families of FHOWA operators such as the fuzzy push up allocation, the fuzzy push down allocation, the fuzzy median allocation and the fuzzy uniform allocation.

Keywords: Aggregation operators, Fuzzy numbers, Fuzzy OWAoperator, Heavy OWA operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1868 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
1867 Factors Related to Being Good Membership Behavior in Organization of Personnel at Suan Sunandha Rajabhat University

Authors: Patchalaphon Seeladlao, Anocha Kimkong

Abstract:

The aims of this study were to compare the differences of being good membership behavior among faculties and staffs of Suan Sunandha Rajabhat University with different sex, age, income, education, marital status, and working period, and investigate the relationships between organizational commitment and being good membership behavior. The research methodology employed a questionnaire as a quantitative method. The respondents were 305 faculties and staffs of Suan Sunandha Rajabhat University. This research used Percentage, Mean, Standard Deviation, t-test, One-Way ANOVA Analysis of Variance, and Pearson’s Product Moment Correlation Coefficient in data analysis. The results showed that organizational commitment among faculties and staffs of Suan Sunandha Rajabhat University was at a high level. In addition, differences in sex, age, income, education, marital status, and working period revealed differences in being good membership behavior. The results also indicated that organizational commitment was significantly related to being good membership behavior.

Keywords: Being Good membership behavior, Organizational Commitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
1866 S-Fuzzy Left h-Ideal of Hemirings

Authors: D.R Prince Williams

Abstract:

The notion of S-fuzzy left h-ideals in a hemiring is introduced and it's basic properties are investigated.We also study the homomorphic image and preimage of S-fuzzy left h-ideal of hemirings.Using a collection of left h-ideals of a hemiring, S-fuzzy left h-ideal of hemirings are established.The notion of a finite-valued S-fuzzy left h-ideal is introduced,and its characterization is given.S-fuzzy relations on hemirings are discussed.The notion of direct product and S-product are introduced and some properties of the direct product and S-product of S-fuzzy left h-ideal of hemiring are also discussed.

Keywords: hemiring, left h-ideal, anti fuzzy h-ideal, S-fuzzy left hideal, t-conorm , homomorphism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
1865 A Comparison of Fuzzy Clustering Algorithms to Cluster Web Messages

Authors: Sara El Manar El Bouanani, Ismail Kassou

Abstract:

Our objective in this paper is to propose an approach capable of clustering web messages. The clustering is carried out by assigning, with a certain probability, texts written by the same web user to the same cluster based on Stylometric features and using fuzzy clustering algorithms. Focus in the present work is on comparing the most popular algorithms in fuzzy clustering theory namely, Fuzzy C-means, Possibilistic C-means and Fuzzy Possibilistic C-Means.

Keywords: Authorship detection, fuzzy clustering, profiling, stylometric features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
1864 Dataset Analysis Using Membership-Deviation Graph

Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh

Abstract:

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Keywords: feature, classification, machine learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1863 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1862 Discovery of Fuzzy Censored Production Rules from Large Set of Discovered Fuzzy if then Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Censored Production Rule is an extension of standard production rule, which is concerned with problems of reasoning with incomplete information, subject to resource constraints and problem of reasoning efficiently with exceptions. A CPR has a form: IF A (Condition) THEN B (Action) UNLESS C (Censor), Where C is the exception condition. Fuzzy CPR are obtained by augmenting ordinary fuzzy production rule “If X is A then Y is B with an exception condition and are written in the form “If X is A then Y is B Unless Z is C. Such rules are employed in situation in which the fuzzy conditional statement “If X is A then Y is B" holds frequently and the exception condition “Z is C" holds rarely. Thus “If X is A then Y is B" part of the fuzzy CPR express important information while the unless part acts only as a switch that changes the polarity of “Y is B" to “Y is not B" when the assertion “Z is C" holds. The proposed approach is an attempt to discover fuzzy censored production rules from set of discovered fuzzy if then rules in the form: A(X) ÔçÆ B(Y) || C(Z).

Keywords: Uncertainty Quantification, Fuzzy if then rules, Fuzzy Censored Production Rules, Learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
1861 Fuzzy T-Neighborhood Groups Acting on Sets

Authors: Hazem. A. Khorshed, Mostafa A. El Gendy, Amer. Abd El-Razik

Abstract:

In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.

Keywords: Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
1860 2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images

Authors: Kechida Ahmed, Drai Redouane, Khelil Mohamed

Abstract:

In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.

Keywords: 2D Gabor Functions, flaw detection, fuzzy c-mean clustering, non destructive testing, texture analysis, T.O.F.D Image (Time of Flight Diffraction).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1859 Characterizations of Ordered Semigroups by (∈,∈ ∨q)-Fuzzy Ideals

Authors: Jian Tang

Abstract:

Let S be an ordered semigroup. In this paper we first introduce the concepts of (∈,∈ ∨q)-fuzzy ideals, (∈,∈ ∨q)-fuzzy bi-ideals and (∈,∈ ∨q)-fuzzy generalized bi-ideals of an ordered semigroup S, and investigate their related properties. Furthermore, we also define the upper and lower parts of fuzzy subsets of an ordered semigroup S, and investigate the properties of (∈,∈ ∨q)-fuzzy ideals of S. Finally, characterizations of regular ordered semigroups and intra-regular ordered semigroups by means of the lower part of (∈ ,∈ ∨q)-fuzzy left ideals, (∈,∈ ∨q)-fuzzy right ideals and (∈,∈ ∨q)- fuzzy (generalized) bi-ideals are given.

Keywords: Ordered semigroup, regular ordered semigroup, intraregular ordered semigroup, (∈, ∈ ∨q)-fuzzy left (right) ideal of an ordered semigroup, (∈, ∈ ∨q)-fuzzy (generalized) bi-ideal of an ordered semigroup.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
1858 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method

Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu

Abstract:

In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.

Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
1857 Fuzzy Decision Making via Multiple Attribute

Authors: Behnaz Zohouri, Mahdi Zowghiand, Mohsen haghighi

Abstract:

In this paper, a method for decision making in fuzzy environment is presented.A new subjective and objective integrated approach is introduced that used to assign weight attributes in fuzzy multiple attribute decision making (FMADM) problems and alternatives and fmally ranked by proposed method.

Keywords: Multiple Attribute Decision Making, Triangular fuzzy numbers, ranking index, Fuzzy Entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
1856 Isomorphism on Fuzzy Graphs

Authors: A.Nagoor Gani, J.Malarvizhi

Abstract:

In this paper, the order, size and degree of the nodes of the isomorphic fuzzy graphs are discussed. Isomorphism between fuzzy graphs is proved to be an equivalence relation. Some properties of self complementary and self weak complementary fuzzy graphs are discussed.

Keywords: complementary fuzzy graphs, co-weak isomorphism, equivalence relation, fuzzy relation, weak isomorphism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4076
1855 An Adaptive Fuzzy Clustering Approach for the Network Management

Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani

Abstract:

The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.

Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
1854 An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers

Authors: Nurhakimah Ab. Rahman, Lazim Abdullah

Abstract:

According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.

Keywords: Dual fuzzy polynomial equations, Interval type-2, Ranking method, Value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
1853 An Innovative Fuzzy Decision Making Based Genetic Algorithm

Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad

Abstract:

Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.

Keywords: Genetic Algorithm, Fuzzy Decision Making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1852 Dependent Weighted Aggregation Operators of Hesitant Fuzzy Numbers

Authors: Jing Liu

Abstract:

In this paper, motivated by the ideas of dependent weighted aggregation operators, we develop some new hesitant fuzzy dependent weighted aggregation operators to aggregate the input arguments taking the form of hesitant fuzzy numbers rather than exact numbers, or intervals. In fact, we propose three hesitant fuzzy dependent weighted averaging(HFDWA) operators, and three hesitant fuzzy dependent weighted geometric(HFDWG) operators based on different weight vectors, and the most prominent characteristic of these operators is that the associated weights only depend on the aggregated hesitant fuzzy numbers and can relieve the influence of unfair hesitant fuzzy numbers on the aggregated results by assigning low weights to those “false” and “biased” ones. Some examples are given to illustrated the efficiency of the proposed operators.

Keywords: Hesitant fuzzy numbers, hesitant fuzzy dependent weighted averaging(HFDWA) operators, hesitant fuzzy dependent weighted geometric(HFDWG) operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
1851 Sensitizing Rules for Fuzzy Control Charts

Authors: N. Pekin Alakoç, A. Apaydın

Abstract:

Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due to the fact that fuzzy numbers increase the number of out of control conditions. The purpose of the study is to develop a set of fuzzy sensitizing rules, which increase the flexibility and sensitivity of fuzzy control charts. Fuzzy sensitizing rules simplify the identification of out of control situations that results in a decrease in the calculation time and number of evaluations in fuzzy control chart approach.

Keywords: Fuzzy set theory, Quality control charts, Run Rules, Unnatural patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
1850 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System

Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao

Abstract:

The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.

Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
1849 A Note on Characterization of Regular Γ-Semigroups in terms of (∈,∈ ∨q)-Fuzzy Bi-ideal

Authors: S.K.Sardar, B.Davvaz, S.Kayal, S.K.Majumdar

Abstract:

The purpose of this note is to obtain some properties of (∈,∈ ∨q)- fuzzy bi-ideals in a Γ-semigroup in order to characterize regular and intra-regular Γ-semigroups.

Keywords: Regular Γ-semigroup, belong to or quasi-coincident, (∈, ∈ ∨q)-fuzzy subsemigroup, (∈, ∈ ∨q)-fuzzy bi-ideals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
1848 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1847 Some Equalities Connected with Fuzzy Soft Matrices

Authors: D. R. Jain

Abstract:

The aim of this paper is to use matrix representation of Fuzzy soft sets for proving some equalities connected with Fuzzy soft sets based on set-operations.

Keywords: Equality, Fuzzy soft matrix, Fuzzy soft sets, operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
1846 Fuzzy Shortest Paths Approximation for Solving the Fuzzy Steiner Tree Problem in Graphs

Authors: Miloš Šeda

Abstract:

In this paper, we deal with the Steiner tree problem (STP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. We propose a modification of the shortest paths approximation based on the fuzzy shortest paths (FSP) evaluations. Since a fuzzy min operation using the extension principle leads to nondominated solutions, we propose another approach to solving the FSP using Cheng's centroid point fuzzy ranking method.

Keywords: Steiner tree, single shortest path problem, fuzzyranking, binary heap, priority queue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1845 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection

Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy

Abstract:

It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.

Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
1844 Ranking Fuzzy Numbers Based On Epsilon-Deviation Degree

Authors: Vincent F. Yu, Ha Thi Xuan Chi

Abstract:

Nejad and Mashinchi (2011) proposed a revision for ranking fuzzy numbers based on the areas of the left and the right sides of a fuzzy number. However, this method still has some shortcomings such as lack of discriminative power to rank similar fuzzy numbers and no guarantee the consistency between the ranking of fuzzy numbers and the ranking of their images. To overcome these drawbacks, we propose an epsilon-deviation degree method based on the left area and the right area of a fuzzy number, and the concept of the centroid point. The main advantage of the new approach is the development of an innovative index value which can be used to consistently evaluate and rank fuzzy numbers. Numerical examples are presented to illustrate the efficiency and superiority of the proposed method.

Keywords: Ranking fuzzy numbers, Centroid, Deviation degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1843 Design of Gain Scheduled Fuzzy PID Controller

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.

Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4061