Search results for: Direct solar irradiance
1208 Highly Efficient Low Power Consumption Tracking Solar Cells for White LED-Based Lighting System
Authors: Theerawut Jinayim, Somchai Arunrungrasmi, Tanes Tanitteerapan, Narong Mungkung
Abstract:
Although White LED lighting systems powered by solar cells have presented for many years, they are not widely used in today application because of their cost and low energy conversion efficiency. The proposed system use the dc power generated by fixed solar cells module to energize White LED light sources that are operated by directly connected White LED with current limitation resistors, resulting in much more power consumption. This paper presents the use of white LED as a general lighting application powered by tracking solar cells module and using pulse to apply the electrical power to the White LED. These systems resulted in high efficiency power conversion, low power consumption, and long light of the white LED.Keywords: Efficiency, lighting, light-emitting diode, pulse, Solar, white LED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23861207 Electrical Properties of Roystonea regia Fruit Extract as Dye Sensitized Solar Cells
Authors: Adenike Boyo, Olasunkanmi Kesinro, Henry Boyo, Surukite Oluwole
Abstract:
Utilizing solar energy in producing electricity can minimize environmental pollution generated by fossil fuel in producing electricity. Our research was base on the extraction of dye from Roystonea regia fruit by using methanol as solvent. The dye extracts were used as sensitizers in Dye-sensitized solar cell (DSSCs). Study was done on the electrical properties from the extracts of Roystonea regia fruit as Dye-sensitized solar cell (DSSCs). The absorptions of the extracts and extracts with dye were determined at different wavelengths (350-1000nm). Absorption peak was observed at 1.339 at wavelength 400nm. The obtained values for methanol extract Roystonea regia extract are, Imp = 0.015mA, Vmp = 12.0mV, fill factor = 0.763, Isc= 0.018 mA and Voc = 13.1 mV and efficiency of 0.32%. .The phytochemical screening was taken and it was observed that Roystonea regia extract contained less of anthocyanin compared to flavonoids. The nanostructured dye sensitized solar cell (DSSC) will provide economically credible alternative to present day silicon p–n junction photovoltaic.
Keywords: Methanol, Ethanol, Titanium dioxide, Roystonea regia fruit, Dye-sensitized solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22601206 Solar Seawater Desalination Still with Seawater Preheater Using Efficient Heat Transfer Oil: Numerical Investigation and Data Verification
Authors: Ahmed N. Shmroukh, Gamal Tag Abdel-Jaber, Rashed D. Aldughpassi
Abstract:
The feasibility of improving the performance of the proposed solar still unit which operated in very hot climate is investigated numerically and verified with experimental data. This solar desalination unit with proposed auxiliary device as seawater preheating system using petrol based textherm oil was used to produce pure fresh water from seawater. The effective evaporation area of basin is about 1 m2. The unit was tested in two main operation modes which are normal and with seawater preheating system. The results showed that, there is good agreement between the theoretical data and the experimental data; this means that the numerical model can be accurately dependable for predicting the proposed solar still performance and design parameters. The results also showed that the fresh water productivity of the solar still in the modified preheating case which is higher than normal case, leads to an increase in productivity of 42%.Keywords: Improving productivity, seawater desalination, solar stills, theoretical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7701205 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.
Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7791204 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use
Authors: Naci Kalkan, Ihsan Dagtekin
Abstract:
Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.Keywords: Passive Solar Systems, Heating, Cooling, Thermal Comfort, Ventilation Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651203 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs
Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia
Abstract:
Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.
Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29241202 Performance and Economic Evaluation of a Hybrid Photovoltaic/Thermal Solar System in Northern China
Authors: E. Sok, Y. Zhuo, S. Wang
Abstract:
A hybrid Photovoltaic/Thermal (PV/T) solar system integrates photovoltaic and solar thermal technologies into one single solar energy device, with dual generation of electricity and heat energy. The aim of the present study is to evaluate the potential for introduction of the PV/T technology into Northern China. For this purpose, outdoor experiments were conducted on a prototype of a PV/T water-heating system. The annual thermal and electrical performances were investigated under the climatic conditions of Beijing. An economic analysis of the system was then carried out, followed by a sensitivity study. The analysis revealed that the hybrid system is not economically attractive with the current market and energy prices. However, considering the continuous commitment of the Chinese government towards policy development in the renewable energy sector, and technological improvements like the increasing cost-effectiveness of PV cells, PV/Thermal technology may become economically viable in the near future.
Keywords: Hybrid Photovoltaic/Thermal (PV/T), Solar energy, Economic analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23601201 Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions
Authors: Abdulrahman M. Homadi
Abstract:
This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.Keywords: Solar energy, air heater, control of temperature, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11351200 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer
Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari
Abstract:
Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.Keywords: Characteristics curve, Photovoltaic, Thermal modelling, Thermal efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25191199 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry
Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan
Abstract:
Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.
Keywords: Solar energy, heating, solar heating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12381198 Current Developments in Flat-Plate Vacuum Solar Thermal Collectors
Authors: Farid Arya, Trevor Hyde, Paul Henshall, Phillip Eames, Roger Moss, Stan Shire
Abstract:
Vacuum flat plate solar thermal collectors offer several advantages over other collectors namely the excellent optical and thermal characteristics they exhibit due to a combination of their wide surface area and high vacuum thermal insulation. These characteristics can offer a variety of applications for industrial process heat as well as for building integration as they are much thinner than conventional collectors making installation possible in limited spaces. However, many technical challenges which need to be addressed to enable wide scale adoption of the technology still remain. This paper will discuss the challenges, expectations and requirements for the flat-plate vacuum solar collector development. In addition, it will provide an overview of work undertaken in Ulster University, Loughborough University, and the University of Warwick on flat-plate vacuum solar thermal collectors. Finally, this paper will present a detailed experimental investigation on the development of a vacuum panel with a novel sealing method which will be used to accommodate a novel slim hydroformed solar absorber.Keywords: Hot box calorimeter, infrared thermography, solar thermal collector, vacuum insulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23971197 Design of a Tube Vent to Enhance the Role of Roof Solar Collector
Authors: Eakkasak Susakunphaisan, Pichai Namprakai, Withaya Puangsombut
Abstract:
The objective of this paper was to designing a ventilation system to enhance the performance of roof solar collector (RSC) for reducing heat accumulation inside the house. The RSC has 1.8 m2 surface area made of CPAC monier roof tiles on the upper part and gypsum board on the lower part. The space between CPAC monier and gypsum board was fixed at 14 cm. Ventilation system of modified roof solar collector (modified RSC) consists of 9 tubes of 0.15m diameter and installed in the lower part of RSC. Experimental result showed that the temperature of the room, and attic temperature. The average temperature reduction of room of house used modified RSC is about 2oC. and the percentage of room temperature reduction varied between 0 to 10%. Therefore, modified RSC is an interesting option in the sense that it promotes solar energy and conserve energy.Keywords: roof solar collector, heat accumulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15111196 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage
Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy
Abstract:
Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates and use the model to determine ways to improve the economics and address cold weather issues. In this paper the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using Organic Rankine Cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modelling provides dynamic performance results using measured meteorological data recorded every minute at the solar facility location. The purpose of this modeling approach is to accurately predict system performance at each time step considering the solar radiation fluctuations due to passing clouds. Optimization of the controller in cold temperatures is another goal of the simulation to for example minimize heat losses in winter when energy demand is high and solar resources are low. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. The results of the simulation are presented for a summer day in Winnipeg which includes comparison of performance parameters of the absorption cooling and ORC systems at different heat transfer fluid (HTF) temperatures.
Keywords: Absorption cooling, parabolic solar trough, remote community, organic Rankine cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31131195 Temperature Effect on the Organic Solar Cells Parameters
Authors: F.Belhocine-Nemmar; MS.Belkaid D. Hatem, O Boughias
Abstract:
In this work, the influence of temperature on the different parameters of solar cells based on organic semiconductors are studied. The short circuit current Isc increases so monotonous with temperature and then saturates to a maximum value before decreasing at high temperatures. The open circuit voltage Vco decreases linearly with temperature. The fill factor FF and efficiency, which are directly related with Isc and Vco follow the variations of the letters. The phenomena are explained by the behaviour of the mobility which is a temperature activated process.Keywords: cells parameters, organic materials, solar cells, temperature effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26471194 Uncertainty of the Brazilian Earth System Model for Solar Radiation
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.
Keywords: Climate changes, projections, solar radiation, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941193 Solar Energy Collection using a Double-layer Roof
Authors: S. Kong Wang
Abstract:
The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.Keywords: solar energy collection, double-layer solar roof, energy conservation, ORC, OTEC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23321192 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya
Authors: El-Sadek H. Nour El-deen, K. Harby
Abstract:
Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.
Keywords: Adsorption, solar energy, environment, cooling, Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12061191 A Comparative Study of PV Models in Matlab/Simulink
Authors: Mohammad Seifi, Azura Bt. Che Soh, Noor Izzrib. Abd. Wahab, Mohd Khair B. Hassan
Abstract:
Solar energy has a major role in renewable energy resources. Solar Cell as a basement of solar system has attracted lots of research. To conduct a study about solar energy system, an authenticated model is required. Diode base PV models are widely used by researchers. These models are classified based on the number of diodes used in them. Single and two-diode models are well studied. Single-diode models may have two, three or four elements. In this study, these solar cell models are examined and the simulation results are compared to each other. All PV models are re-designed in the Matlab/Simulink software and they examined by certain test conditions and parameters. This paper provides comparative studies of these models and it tries to compare the simulation results with manufacturer-s data sheet to investigate model validity and accuracy. The results show a four- element single-diode model is accurate and has moderate complexity in contrast to the two-diode model with higher complexity and accuracyKeywords: Fill Factor (FF), Matlab/Simulink, Maximum PowerPoint (MPP), Maximum Power Point Tracker (MPPT), Photo Voltaic(PV), Solar cell, Standard Test Condition (STC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58051190 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch
Authors: M. Talebzadegan, S. Bina, I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.
Keywords: Solar energy, heat demand, renewable, pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6871189 A Beacon Based Priority Routing Scheme for Solar Power Plants in WSNs
Authors: Ki-Sung Park, Dae-Hee Lee, Dae-Ho Won, Yeon-Mo Yang
Abstract:
Solar power plants(SPPs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm to deriver the sensing data from the end node of solar power plants to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self routing scheme for solar power plants. The proposed beacon based priority routing Algorithm (BPRA) scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing in solar power plants.Keywords: Solar Power Plants(SPPs), Self routing, Quality of Service(QoS), WPANs, WSNs, TinyOS, TOSSIM, IEEE802.15.4
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21691188 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage
Abstract:
Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.
Keywords: Solar access analysis, energy building design tools, urban planning, solar potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20661187 Characteristics of Different Solar PV Modules under Partial Shading
Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan
Abstract:
Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.
Keywords: Partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73321186 Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test
Authors: R. Alias, A. Kasa, M. R. Taha
Abstract:
The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shear tests and the small direct shear tests carried out using the same shearing rate of 0.09 mm/min and similar normal stresses of 100, 200 and 300 kPa. The results show that the peak and residual shear strength increases as particle size increases.
Keywords: Particle size, shear strength, granular material, direct shear test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52481185 A Theoretical Model for a Humidification Dehumidification (HD) Solar Desalination Unit
Authors: Yasser Elhenawy, M. Abd Elkader, Gamal H. Moustafa
Abstract:
A theoretical study of a humidification dehumidification solar desalination unit has been carried out to increase understanding the effect of weather conditions on the unit productivity. A humidification-dehumidification (HD) solar desalination unit has been designed to provide fresh water for population in remote arid areas. It consists of solar water collector and air collector; to provide the hot water and air to the desalination chamber. The desalination chamber is divided into humidification and dehumidification towers. The circulation of air between the two towers is maintained by the forced convection. A mathematical model has been formulated, in which the thermodynamic relations were used to study the flow, heat and mass transfer inside the humidifier and dehumidifier. The present technique is performed in order to increase the unit performance. Heat and mass balance has been done and a set of governing equations has been solved using the finite difference technique. The unit productivity has been calculated along the working day during the summer and winter sessions and has compared with the available experimental results. The average accumulative productivity of the system in winter has been ranged between 2.5 to 4 (kg/m2)/day, while the average summer productivity has been found between 8 to 12 (kg/m2)/day.
Keywords: Finite difference, Dehumidification, Humidification, Solar desalination, Solar collector, Simulation, Water productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16801184 Enhancement of Thermal Performance of Latent Heat Solar Storage System
Authors: Rishindra M. Sarviya, Ashish Agrawal
Abstract:
Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.
Keywords: Latent heat, numerical study, phase change material, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13541183 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants
Authors: N. C. Shahi, Anupama Singh, A. E. Kate
Abstract:
There was a scenario present day that drying of fresh fruits and vegetables by indirect solar drying by using mechanical device; hence, an effort was made to develop a small scale solar tunnel dryer (STD). Drying of spinach is carried out to analyze the performance of the dryer and to study its drying characteristics. To evaluate the performance of dryer the independent variables were selected as air flow rate, loading density and shade net while collector efficiency, drying efficiency, overall efficiency and specific energy consumption were selected as responses during performing the experiments. The spinach was dried from initial moisture content 88.21-94.04% (w.b.) to final moisture content 3.50-5.13% (w.b.). The drying time considerably reduced as compared to open sun drying of spinach as sun drying took 15 h for drying. The average collector efficiency, drying efficiency and overall efficiency were in the range 28.73-61.15%, 11.63% to 22.13%, and 7.61-14.66%, respectively.Keywords: Solar dryer, collector efficiency, drying efficiency, spinach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18191182 The Effect of Insurance on Foreign Direct Investments Inflow to Nigeria
Authors: Chimaobi V. Okolo, Afamefuna J. Ani, Ebere U. Okolo
Abstract:
This paper seeks to assess the implications of insurance to foreign direct investment inflow in Nigeria. Multiple linear regression technique and correlation matrix test were employed to measure the extent to which foreign direct investment was influenced. The result showed that insurance premium (IP), asset size of insurance industry (AS), and total investment of the industry (TI) impacted significantly and positively on foreign direct investment inflow in Nigeria. There should be effective risk transfer mechanism and financial intermediation, which gives the investor confidence in the risk management strength of the host country.Keywords: Foreign direct investment, insurance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30481181 Comparative Analysis between Different Proposed Responsive Façade Designs for Reducing the Solar Radiation on the West Façade in the Hot Arid Region
Authors: Merna H. Ibrahim
Abstract:
Designing buildings which are sustainable and can control and reduce the solar radiation penetrated from the building facades is such an architectural turn. One of the most important methods of saving energy in a building is carefully designing its facade. Building’s facade is one of the most significant contributors to the energy budget as well as the comfort parameters of a building. Responsive architecture adapts to the surrounding environment causing alteration in the envelope configuration to perform in a more effectively way. One of the objectives of the responsive facades is to protect the building’s users from the external environment and achieving comfortable indoor environment. Solar radiation is one of the aspects that affects the comfortable indoor environment, as well as affects the energy consumption consumed by the HVAC systems for maintaining the indoor comfortable conditions. The aim of the paper is introducing and comparing between four different proposed responsive façade designs in terms of solar radiation reduction on the west façade of a building located in the hot arid region. In addition, the paper highlights the reducing amount of the solar radiation for each proposed responsive facades on the west façade. At the end of the paper, a proposal is introduced which combines the four different axis of movements which reduces the solar radiation the most. Moreover, the paper highlights the definition and aim of the responsive architecture, as well as the focusing on the solar radiation aspect in the hot arid zones. Besides, the paper analyzes an international responsive façade building in Essen, Germany, focusing on the type of responsive facades, angle of rotation, mechanism of movement and the effect of the responsive facades on the building’s performance.
Keywords: kinetic facades, mechanism of movement, responsive architecture, solar radiation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8131180 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition
Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram
Abstract:
In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.Keywords: Charge carrier diffusion lengths, methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761179 Synthesis and Evaluation of Photovoltaic Properties of an Organic Dye for Dye-Sensitized Solar Cells
Authors: M. Hosseinnejad, K. Gharanjig
Abstract:
In the present study, metal free organic dyes were prepared and used as photo-sensitizers in dye-sensitized solar cells. Double rhodanine was utilized as the fundamental electron acceptor group to which electron donor aldehyde with varying substituents was attached to produce new organic dye. This dye was first purified and then characterized by analytical techniques. Spectrophotometric evaluations of the prepared dye in solution and on a nano anatase TiO2 substrate were carried out in order to assess possible changes in the status of the dyes in different environments. The results show that the dye form j-type aggregates on the nano TiO2. Additionally, oxidation potential measurements were also carried out. Finally, dye sensitized solar cell based on synthesized dye was fabricated in order to determine the photovoltaic behavior and conversion efficiency of individual dye.Keywords: Conversion efficiency, dye-sensitized solar cell, photovoltaic behavior, sensitizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287