Search results for: carbon dioxide storage.
98 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array
Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang
Abstract:
Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.
Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283797 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid
Authors: Abdulla Rahil, Rupert Gammon, Neil Brown
Abstract:
The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.
Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126396 In vitro Effects of Salvia officinalis on Bovine Spermatozoa
Authors: Eva Tvrdá, Boris Botman, Marek Halenár, Tomáš Slanina, Norbert Lukáč
Abstract:
In vitro storage and processing of animal semen represents a risk factor to spermatozoa vitality, potentially leading to reduced fertility. A variety of substances isolated from natural sources may exhibit protective or antioxidant properties on the spermatozoon, thus extending the lifespan of stored ejaculates. This study compared the ability of different concentrations of the Salvia officinalis extract on the motility, mitochondrial activity, viability and reactive oxygen species (ROS) production by bovine spermatozoa during different time periods (0, 2, 6 and 24 h) of in vitro culture. Spermatozoa motility was assessed using the Computer-assisted sperm analysis (CASA) system. Cell viability was examined using the metabolic activity MTT assay, the eosin-nigrosin staining technique was used to evaluate the sperm viability and ROS generation was quantified using luminometry. The CASA analysis revealed that the motility in the experimental groups supplemented with 0.5-2 µg/mL Salvia extract was significantly lower in comparison with the control (P<0.05; Time 24 h). At the same time, a long-term exposure of spermatozoa to concentrations ranging between 0.05 µg/mL and 2 µg/mL had a negative impact on the mitochondrial metabolism (P<0.05; Time 24 h). The viability staining revealed that 0.001-1 µg/mL Salvia extract had no effects on bovine male gametes, however 2 µg/mL Salvia had a persisting negative effect on spermatozoa (P<0.05). Furthermore 0.05-2 µg/mL Salvia exhibited an immediate ROS-promoting effect on the sperm culture (P>0.05; Time 0 h and 2 h), which remained significant throughout the entire in vitro culture (P<0.05; Time 24 h). Our results point out to the necessity to examine specific effects the biomolecules present in Salvia officinalis may have individually or collectively on the in vitro sperm vitality and oxidative profile.Keywords: Bulls, CASA, MTT test, reactive oxygen species, sage, Salvia officinalis, spermatozoa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135095 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.
Keywords: Absolute entropy, irreversibility, municipal solid waste, waste-to-energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184094 Developments for ''Virtual'' Monitoring and Process Simulation of the Cryogenic Pilot Plant
Authors: Carmen Maria Moraru, Iuliana Stefan, Ovidiu Balteanu, Ciprian Bucur, Liviu Stefan, Anisia Bornea, Ioan Stefanescu
Abstract:
The implementation of the new software and hardware-s technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the implementation of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system-s flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be executed, to be continued with the execution of optimization system, by choosing new and performed methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is executed with the support of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named “virtually" as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays and important role in the environment protection and durable development through new technologies, that is – the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimisation of nuclear processes is also a major driving force for economic and social development.
Keywords: Monitoring system, process simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197393 How to Win Passengers and Influence Motorists? Lessons Learned from a Comparative Study of Global Transit Systems
Authors: Oliver F. Shyr, Yu-Hsuan Hsiao, David E. Andersson
Abstract:
Due to the call of global warming effects, city planners aim at actions for reducing carbon emission. One of the approaches is to promote the usage of public transportation system toward the transit-oriented-development. For example, rapid transit system in Taipei city and Kaohsiung city are opening. However, until November 2008 the average daily patronage counted only 113,774 passengers at Kaohsiung MRT systems, much less than which was expected. Now the crucial questions: how the public transport competes with private transport? And more importantly, what factors would enhance the use of public transport? To give the answers to those questions, our study first applied regression to analyze the factors attracting people to use public transport around cities in the world. It is shown in our study that the number of MRT stations, city population, cost of living, transit fare, density, gasoline price, and scooter being a major mode of transport are the major factors. Subsequently, our study identified successful and unsuccessful cities in regard of the public transport usage based on the diagnosis of regression residuals. Finally, by comparing transportation strategies adopted by those successful cities, our conclusion stated that Kaohsiung City could apply strategies such as increasing parking fees, reducing parking spaces in downtown area, and reducing transfer time by providing more bus services and public bikes to promote the usage of public transport.
Keywords: Public Transit System, Comparative Study, Transport Demand Management, Regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209192 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application
Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran
Abstract:
Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.
Keywords: Electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68791 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector
Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu
Abstract:
In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have a higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of a polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical obervation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the nondestructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.
Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125890 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam
Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin
Abstract:
Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.
Keywords: Isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 320889 Thermal Treatments and Characteristics Study On Unalloyed Structural (AISI 1140) Steel
Authors: S. S. Sharma, P. R. Prabhu, Rajagopal Chadaga
Abstract:
The main emphasis of metallurgists has been to process the materials to obtain the balanced mechanical properties for the given application. One of the processing routes to alter the properties is heat treatment. Nearly 90% of the structural applications are related to the medium carbon an alloyed steels and hence are regarded as structural steels. The major requirement in the conventional steel is to improve workability, toughness, hardness and grain refinement. In this view, it is proposed to study the mechanical and tribological properties of unalloyed structural (AISI 1140) steel with different thermal (heat) treatments like annealing, normalizing, tempering and hardening and compared with as brought (cold worked) specimen. All heat treatments are carried out in atmospheric condition. Hardening treatment improves hardness of the material, a marginal decrease in hardness value with improved ductility is observed in tempering. Annealing and normalizing improve ductility of the specimen. Normalized specimen shows ultimate ductility. Hardened specimen shows highest wear resistance in the initial period of slide wear where as above 25KM of sliding distance, as brought steel dominates the hardened specimen. Both mild and severe wear regions are observed. Microstructural analysis shows the existence of pearlitic structure in normalized specimen, lath martensitic structure in hardened, pearlitic, ferritic structure in annealed specimen.
Keywords: Annealing, hardness, heat treatment, normalizing, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211388 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies
Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii
Abstract:
The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.
Keywords: C/C composites, frictional coefficient, SiC, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82887 Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study
Authors: Sunday Olufemi Adesogan
Abstract:
The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.
Keywords: Operational, efficiency, production, supply, water treatment plant, water loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72286 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris
Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini
Abstract:
International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.Keywords: Deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62685 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria
Authors: D. Tsuanyo, D. Aussel, Y. Azoumah, P. Neveu
Abstract:
An innovative concept called “Flexy-Energy” is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energy sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel Diesel generators and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel Diesel generators. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand.This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.
Keywords: Investments criteria, Optimization, PV hybrid, Sizing, Rural electrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205384 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates
Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes
Abstract:
The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.
Keywords: Composites materials, laminated composite plate, shear deformation theory of plates, finite element analysis, free vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85483 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor
Authors: Barenten Suciu
Abstract:
In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.
Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135282 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.
Keywords: Electrowinning, intercell bars, PV energy, current modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62381 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.
Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41480 Computational Identification of Bacterial Communities
Authors: Eleftheria Tzamali, Panayiota Poirazi, Ioannis G. Tollis, Martin Reczko
Abstract:
Stable bacterial polymorphism on a single limiting resource may appear if between the evolved strains metabolic interactions take place that allow the exchange of essential nutrients [8]. Towards an attempt to predict the possible outcome of longrunning evolution experiments, a network based on the metabolic capabilities of homogeneous populations of every single gene knockout strain (nodes) of the bacterium E. coli is reconstructed. Potential metabolic interactions (edges) are allowed only between strains of different metabolic capabilities. Bacterial communities are determined by finding cliques in this network. Growth of the emerged hypothetical bacterial communities is simulated by extending the metabolic flux balance analysis model of Varma et al [2] to embody heterogeneous cell population growth in a mutual environment. Results from aerobic growth on 10 different carbon sources are presented. The upper bounds of the diversity that can emerge from single-cloned populations of E. coli such as the number of strains that appears to metabolically differ from most strains (highly connected nodes), the maximum clique size as well as the number of all the possible communities are determined. Certain single gene deletions are identified to consistently participate in our hypothetical bacterial communities under most environmental conditions implying a pattern of growth-condition- invariant strains with similar metabolic effects. Moreover, evaluation of all the hypothetical bacterial communities under growth on pyruvate reveals heterogeneous populations that can exhibit superior growth performance when compared to the performance of the homogeneous wild-type population.
Keywords: Bacterial polymorphism, clique identification, dynamic FBA, evolution, metabolic interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137979 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module
Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey
Abstract:
This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.
Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20178 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.
Keywords: Automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5077 Corrosion Mitigation in Gas Facilities Piping through the Use of Fusion Bond Epoxy Coated Pipes and Corrosion Resistant Alloy Girth Welds
Authors: Saad Alkhaldi, Fadi Ghammas, Tariq Alghamdi, Stefano Alexandirs
Abstract:
The operating conditions and corrosive nature of the process fluid in the Haradh and Hawiyah areas are subjecting facility piping to undesirable corrosion phenomena. Therefore, production headers inside remote headers have been internally cladded with high alloy material to mitigate the corrosion damage mechanism. Corrosion mitigation in the jump-over lines, constructed between the existing flowlines and the newly constructed facilities to provide operational flexibility, is proposed. This corrosion mitigation system includes the application of fusion bond epoxy (FBE) coating on the internal surface of the pipe and depositing corrosion-resistant alloy (CRA) weld layers at pipe and fittings ends to protect the carbon steel material. In addition, high alloy CRA weld material is used to deposit the girth weld between the 90-degree elbows and mating internally coated segments. A rigorous testing and qualification protocol was established prior to actual adoption at the Haradh and Hawiyah Field Gas Compression Program, currently being executed by Saudi Aramco. The proposed mitigation system, aimed at applying the cladding at the ends of the internally FBE coated pipes/elbows, will resolve field joint coating challenges, eliminate the use of approximately 1700 breakout flanges, and prevent the potential hydrocarbon leaks.
Keywords: Corrosion, FBE coated sour service, cost savings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32876 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland
Authors: Alireza Ansariyar, Safieh Laaly
Abstract:
Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates Connected and Autonomous Vehicles (CAVs) fuel consumption and air pollutants including Carbon Monoxide (CO), Particulate Matter (PM), and Nitrogen Oxides (NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.
Keywords: Connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46175 Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review
Authors: Mst. Nilufa Sultana, Shatirah Akib, Muhammad Aqeel Ashraf, Mohamed Roseli Zainal Abidin
Abstract:
Most people today are aware that global climate change is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kuala Lumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field.
Keywords: Green roofs, INWQS, MSMA-SME, Rainwater harvesting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290074 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination
Authors: N. Santatriniaina, J. Deseure, T.Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana
Abstract:
Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 [mm] is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.
Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317373 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia
Authors: Mohammed Abaoli, Omer Kara
Abstract:
The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam. Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area.
Keywords: Commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61472 Soil Evaluation for Cashew, Cocoa and Oil Palm in Akure, South-West Nigeria
Authors: Francis Bukola Dada, Samuel Ojo Ajayi, Babatunde Sunday Ewulo, Kehinde Oseni Saani
Abstract:
A key element in the sustainability of the soil-plant relationship in crop yield and performance is the soil's capacity to support tree crops prior to establishment. With the intention of determining the suitability and limitations of the soils of the locations, the northern and southern portions of Akure, a rainforest in Nigeria, were chosen for the suitability evaluation of land for tree crops. In the study area, 16 pedons were established with the help of the Global Positioning System (GPS), the locations were georeferenced and samples were taken from the pedons. The samples were subjected to standard physical and chemical testing. The findings revealed that soils in the research locations were deep to extremely deep, with pH ranging from highly acidic to slightly acidic (4.94 to 6.71). and that sand predominated. The soils had low levels of organic carbon, effective cation exchange capacity (ECEC), total nitrogen, and available phosphorus, whereas exchangeable cations were evaluated as low to moderate. The suitability result indicated that only Pedon 2 and Pedon 14 are currently highly suitable (S1) for the production of oil palms, while others ranged from moderately suitable to marginally suitable. Pedons 4, 12, and 16 were not suitable (N1), respectively, but other Pedons were moderately suitable (S2) and marginally suitable (S3) for the cultivation of cocoa. None of the study areas are currently highly suitable for the production of oil palms. The poor soil texture and low fertility status were the two main drawbacks found. Finally, sound management practices and soil conservation are essential for fertility sustainability.
Keywords: Cashew, cocoa, land evaluation, oil palm, soil fertility suitability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45171 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis
Authors: Daniel Murrant, Andrew Quinn, Lee Chapman
Abstract:
A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.
Keywords: Water-energy nexus, water resources, abstraction, climate change, power station cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154970 Potential of Native Microorganisms in Tagus Estuary
Authors: Ana C. Sousa, Beatriz C. Santos, Fátima N. Serralha
Abstract:
The Tagus estuary is heavily affected by industrial and urban activities, making bioremediation studies crucial for environmental preservation. Fuel contamination in the area can arise from various anthropogenic sources, such as oil spills from shipping, fuel storage and transfer operations, and industrial discharges. These pollutants can cause severe harm to the ecosystem and the organisms, including humans, that inhabit it. Nonetheless, there are always natural organisms with the ability to resist these pollutants and transform them into non-toxic or harmless substances, which defines the process of bioremediation. Exploring the microbial communities existing in soil and their capacity to break down hydrocarbons has the potential to enhance the development of more efficient bioremediation approaches. The aim of this investigation was to explore the existence of hydrocarbonoclastic microorganisms in six locations within the Tagus estuary, three on the north bank: Trancão River, Praia Fluvial do Cais das Colinas and Praia de Algés, and three on the south bank: Praia Fluvial de Alcochete, Praia Fluvial de Alburrica, and Praia da Trafaria. In all studied locations, native microorganisms of the genus Pseudomonas were identified. The bioremediation rate of common hydrocarbons like gasoline, hexane, and toluene was assessed using the redox indicator 2,6-dichlorophenolindophenol (DCPIP). Effective hydrocarbon-degrading bacterial strains were identified in all analyzed areas, despite adverse environmental conditions. The highest bioremediation rates were achieved for gasoline (68%) in Alburrica, hexane (65%) in Algés, and toluene (79%) in Algés. Generally, the bacteria demonstrated efficient degradation of hydrocarbons added to the culture medium, with higher rates of aerobic biodegradation of hydrocarbons observed. These findings underscore the necessity for further in situ studies to better comprehend the relationship between native microbial communities and the potential for pollutant degradation in soil.
Keywords: Biodegradability rate, hydrocarbonoclastic microorganisms, soil bioremediation, Tagus estuary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15569 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: Emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988