Search results for: Emotions in tweets emotion detection in text
779 A Combined Neural Network Approach to Soccer Player Prediction
Authors: Wenbin Zhang, Hantian Wu, Jian Tang
Abstract:
An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.
Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3763778 Extracting Attributes for Twitter Hashtag Communities
Authors: Ashwaq Alsulami, Jianhua Shao
Abstract:
Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.
Keywords: Attributed community, attribute detection, community, social network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507777 Quantification of Peptides based on Isotope Dilution Surface Enhanced Raman Scattering
Authors: F. Yaghobian, R. Stosch, B. Güttler
Abstract:
This study aims to demonstrate the quantification of peptides based on isotope dilution surface enhanced Raman scattering (IDSERS). SERS spectra of phenylalanine (Phe), leucine (Leu) and two peptide sequences TGQIFK (T13) and YSFLQNPQTSLCFSESIPTPSNR (T6) as part of the 22-kDa human growth hormone (hGH) were obtained on Ag-nanoparticle covered substrates. On the basis of the dominant Phe and Leu vibrational modes, precise partial least squares (PLS) prediction models were built enabling the determination of unknown T13 and T6 concentrations. Detection of hGH in its physiological concentration in order to investigate the possibility of protein quantification has been achieved.Keywords: Surface Enhanced Raman Scattering, Quantification, Peptides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672776 A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model
Authors: Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap Singh Kirar
Abstract:
During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.Keywords: Additive white Gaussian noise, digitalcommunication system, multiplicative neuron, Pi neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668775 Effect of Different Moisture States of Surface-Treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete
Authors: Sallehan Ismail, Mahyuddin Ramli
Abstract:
This study examined the properties of fresh and hardened concretes as influenced by the moisture state of the coarse recycled concrete aggregates (RCA) after surface treatment. Surface treatment was performed by immersing the coarse RCA in a calcium metasilicate (CM) solution. The treated coarse RCA was maintained in three controlled moisture states, namely, air-dried, oven-dried, and saturated surface-dried (SSD), prior to its use in a concrete mix. The physical properties of coarse RCA were evaluated after surface treatment during the first phase of the experiment to determine the density and the water absorption characteristics of the RCA. The second phase involved the evaluation of the slump, slump loss, density, and compressive strength of the concretes that were prepared with different proportions of natural and treated coarse RCA. Controlling the moisture state of the coarse RCA after surface treatment was found to significantly influence the properties of the fresh and hardened concretes.
Keywords: Moisture state, recycled concrete aggregate, surface treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3244774 Biosensor Measurement of Urea Coonncentration in Human Blood Serum
Authors: O. L. Kukla, S. V. Marchenko, O. A. Zinchenko, O. S. Pavluchenko, O. M. KKuukla, S. V. Dzyadevych, O. P. Soldatkin
Abstract:
An application of the highly biosensor based on pH-sensitive field immobilized urease for urea analysis was demo The main analytical characteristics of the bios determined; the conditions of urea measureme blood were optimized. A conceptual possibility biosensor for detection of urea concentratio patients suffering from renal insufficiency was sensitive and selective effect transistor and monstrated in this work. iosensor developed were ment in real samples of ility of application of the tion in blood serum of as shown.
Keywords: Biosensor, blood serum, pH transistor, urea, urease, field-effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944773 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques
Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah
Abstract:
Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or underestimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improve accuracies. This requires standard measurement methods to be structured in ontological and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.
Keywords: BIM, Construction projects, Cost estimation, NRM, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4444772 An Empirical Analysis of the Impact of Selected Macroeconomic Variables on Capital Formation in Libya (1970–2010)
Authors: Khaled Ramadan Elbeydi
Abstract:
This study is carried out to provide an insight into the analysis of the impact of selected macro-economic variables on gross fixed capital formation in Libya using annual data over the period (1970-2010). The importance of this study comes from the ability to show the relative important factors that impact the Libyan gross fixed capital formation. This understanding would give indications to decision makers on which policy they must focus to stimulate the economy. An Autoregressive Distributed Lag (ARDL) modeling process is employed to investigate the impact of the Gross Domestic Product, Monetary Base and Trade Openness on Gross Fixed Capital Formation in Libya. The results of this study reveal that there is an equilibrium relationship between capital formation and its determinants. The results also indicate that GDP and trade openness largely explain the pattern of capital formation in Libya. The findings and recommendations provide vital information relevant for policy formulation and implementation aimed to improve capital formation in Libya.
Keywords: ARDL, Bounds test, capital formation, Cointegration, Libya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728771 Automatic Reusability Appraisal of Software Components using Neuro-fuzzy Approach
Authors: Parvinder S. Sandhu, Hardeep Singh
Abstract:
Automatic reusability appraisal could be helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this paper, we have mentioned two-tier approach by studying the structural attributes as well as usability or relevancy of the component to a particular domain. Latent semantic analysis is used for the feature vector representation of various software domains. It exploits the fact that FeatureVector codes can be seen as documents containing terms -the idenifiers present in the components- and so text modeling methods that capture co-occurrence information in low-dimensional spaces can be used. Further, we devised Neuro- Fuzzy hybrid Inference System, which takes structural metric values as input and calculates the reusability of the software component. Decision tree algorithm is used to decide initial set of fuzzy rules for the Neuro-fuzzy system. The results obtained are convincing enough to propose the system for economical identification and retrieval of reusable software components.Keywords: Clustering, ID3, LSA, Neuro-fuzzy System, SVD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662770 Hydraulic Studies on Core Components of PFBR
Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan
Abstract:
Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.
Keywords: Fast Breeder Reactor, Cavitation, pressure drop, Reactor components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936769 Combined Hashing/Watermarking Method for Image Authentication
Authors: Vlado Kitanovski, Dimitar Taskovski, Sofija Bogdanova
Abstract:
In this paper we present a combined hashing/watermarking method for image authentication. A robust image hash, invariant to legitimate modifications, but fragile to illegitimate modifications is generated from the local image characteristics. To increase security of the system the watermark is generated using the image hash as a key. Quantized Index Modulation of DCT coefficients is used for watermark embedding. Watermark detection is performed without use of the original image. Experimental results demonstrate the effectiveness of the presented method in terms of robustness and fragility.Keywords: authentication, blind watermarking, image hash, semi-fragile watermarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001768 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations
Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman
Abstract:
CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.
Keywords: Slow steaming, carbon emission, maritime logistics, sustainability, green supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675767 Digital Preservation in Nigeria Universities Libraries: A Comparison between University of Nigeria Nsukka and Ahmadu Bello University Zaria
Authors: Suleiman Musa, Shuaibu Sidi Safiyanu
Abstract:
This study examined the digital preservation in Nigeria university libraries. A comparison between the university of Nigeria Nsukka (UNN) and Ahmadu Bello University Zaria (ABU, Zaria). The study utilized primary source of data obtained from two selected institution librarians. Finding revealed varying results in terms of skills acquired by librarians before and after digitization of the two institutions. The study reports that journals publication, text book, CD-ROMS, conference papers and proceedings, theses, dissertations and seminar papers are among the information resources available for digitization. The study further documents that copyright issue, power failure, and unavailability of needed materials are among the challenges facing the digitization of library of the institution. On the basis of the finding, the study concluded that digitization of library enhances efficiency in organization and retrieval of information services. The study therefore recommended that software should be upgraded with backup, training of the librarians on digital process, installation of antivirus and enhancement of technical collaboration between the library and MIS.Keywords: Digitalization, preservation, libraries, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726766 Syntax Sensitive and Language Independent Detection of Code Clones
Authors: Kazuaki Maeda
Abstract:
This paper proposes a new technique to detect code clones from the lexical and syntactic point of view, which is based on PALEX source code representation. The PALEX code contains the recorded parsing actions and also lexical formatting information including white spaces and comments. We can record a list of parsing actions (shift, reduce, and reading a token) during a compiling process after a compiler finishes analyzing the source code. The proposed technique has advantages for syntax sensitive approach and language independency.Keywords: Code Clones, Source Code Representation, XML, Parser, Parser Generator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461765 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard A. Jorswieck
Abstract:
The capacity of fifth-generation (5G)vehicle-to-everything (V2X) networks poses significant challenges.To address this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a vehicular heterogeneous network (HetNet). We propose a framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles, while guarantying the WiFi users throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.
Keywords: Vehicle-to-everything, resource allocation, BS assignment, new radio, new radio unlicensed, coexistence NR-U and WiFi, deep deterministic policy gradient, Deep Q-network, Duty cycle mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325764 Object Localization in Medical Images Using Genetic Algorithms
Authors: George Karkavitsas, Maria Rangoussi
Abstract:
We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.
Keywords: Genetic algorithms, object registration, pattern recognition, blood cell microscope images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969763 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics
Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu
Abstract:
Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.
Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450762 Efficient Mean Shift Clustering Using Exponential Integral Kernels
Authors: S. Sutor, R. Röhr, G. Pujolle, R. Reda
Abstract:
This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.
Keywords: Clustering, Integral Images, Kernels, Person Detection, Person Tracking, Intelligent Video Surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529761 Speech Recognition Using Scaly Neural Networks
Authors: Akram M. Othman, May H. Riadh
Abstract:
This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737760 Performance Monitoring of the Refrigeration System with Minimum Set of Sensors
Authors: Radek Fisera, Petr Stluka
Abstract:
This paper describes a methodology for remote performance monitoring of retail refrigeration systems. The proposed framework starts with monitoring of the whole refrigeration circuit which allows detecting deviations from expected behavior caused by various faults and degradations. The subsequent diagnostics methods drill down deeper in the equipment hierarchy to more specifically determine root causes. An important feature of the proposed concept is that it does not require any additional sensors, and thus, the performance monitoring solution can be deployed at a low installation cost. Moreover only a minimum of contextual information is required, which also substantially reduces time and cost of the deployment process.Keywords: Condition monitoring, energy baselining, fault detection and diagnostics, commercial refrigeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880759 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues
Authors: MA. Ansari
Abstract:
In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.Keywords: Diffusion equation, boundary element method, refractive index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017758 An Ontology Based Question Answering System on Software Test Document Domain
Authors: Meltem Serhatli, Ferda N. Alpaslan
Abstract:
Processing the data by computers and performing reasoning tasks is an important aim in Computer Science. Semantic Web is one step towards it. The use of ontologies to enhance the information by semantically is the current trend. Huge amount of domain specific, unstructured on-line data needs to be expressed in machine understandable and semantically searchable format. Currently users are often forced to search manually in the results returned by the keyword-based search services. They also want to use their native languages to express what they search. In this paper, an ontology-based automated question answering system on software test documents domain is presented. The system allows users to enter a question about the domain by means of natural language and returns exact answer of the questions. Conversion of the natural language question into the ontology based query is the challenging part of the system. To be able to achieve this, a new algorithm regarding free text to ontology based search engine query conversion is proposed. The algorithm is based on investigation of suitable question type and parsing the words of the question sentence.Keywords: Description Logics, ontology, question answering, reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149757 Combining Skin Color and Optical Flow for Computer Vision Systems
Authors: Muhammad Raza Ali, Tim Morris
Abstract:
Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.Keywords: Bayesian tracking, chromaticity space, optical flowgesture recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928756 An Adaptive Virtual Desktop Service in Cloud Computing Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud computing is becoming more and more matured over the last few years and consequently the demands for better cloud services is increasing rapidly. One of the research topics to improve cloud services is the desktop computing in virtualized environment. This paper aims at the development of an adaptive virtual desktop service in cloud computing platform based on our previous research on the virtualization technology. We implement cloud virtual desktop and application software streaming technology that make it possible for providing Virtual Desktop as a Service (VDaaS). Given the development of remote desktop virtualization, it allows shifting the user’s desktop from the traditional PC environment to the cloud-enabled environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenances and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote desktop service represents the next significant step to the mobile workplace, and it lets users access their desktop environments from virtually anywhere.
Keywords: Cloud Computing, Virtualization, Virtual Desktop, VDaaS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487755 Determining Occurrence in FMEA Using Hazard Function
Authors: Hazem J. Smadi
Abstract:
FMEA has been used for several years and proved its efficiency for system’s risk analysis due to failures. Risk priority number found in FMEA is used to rank failure modes that may occur in a system. There are some guidelines in the literature to assign the values of FMEA components known as Severity, Occurrence and Detection. This paper propose a method to assign the value for occurrence in more realistic manner representing the state of the system under study rather than depending totally on the experience of the analyst. This method uses the hazard function of a system to determine the value of occurrence depending on the behavior of the hazard being constant, increasing or decreasing.
Keywords: FMEA, Hazard Function, Risk Priority Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3526754 The Ability of Forecasting the Term Structure of Interest Rates Based On Nelson-Siegel and Svensson Model
Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović
Abstract:
Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector autoregressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is Neural networks using Nelson-Siegel estimation of yield curves.
Keywords: Nelson-Siegel model, Neural networks, Svensson model, Vector autoregressive model, Yield curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248753 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3801752 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308751 A New Technique for Multi Resolution Characterization of Epileptic Spikes in EEG
Authors: H. N. Suresh, Dr. V. Udaya Shankara
Abstract:
A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). A multi-resolution approach and a non-linear energy operator are exploited. The signal on each EEG channel is decomposed into three sub bands using a non-decimated wavelet transform (WT). The WT is a powerful tool for multi-resolution analysis of non-stationary signal as well as for signal compression, recognition and restoration. Each sub band is analyzed by using a non-linear energy operator, in order to detect spikes. A decision rule detects the presence of spikes in the EEG, relying upon the energy of the three sub-bands. The effectiveness of the proposed technique was confirmed by analyzing both test signals and EEG layouts.Keywords: EEG, Spike, SNEO, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375750 A Knowledge-Based E-mail System Using Semantic Categorization and Rating Mechanisms
Authors: Azleena Mohd Kassim, Muhamad Rashidi A. Rahman, Yu-N. Cheah
Abstract:
Knowledge-based e-mail systems focus on incorporating knowledge management approach in order to enhance the traditional e-mail systems. In this paper, we present a knowledgebased e-mail system called KS-Mail where people do not only send and receive e-mail conventionally but are also able to create a sense of knowledge flow. We introduce semantic processing on the e-mail contents by automatically assigning categories and providing links to semantically related e-mails. This is done to enrich the knowledge value of each e-mail as well as to ease the organization of the e-mails and their contents. At the application level, we have also built components like the service manager, evaluation engine and search engine to handle the e-mail processes efficiently by providing the means to share and reuse knowledge. For this purpose, we present the KS-Mail architecture, and elaborate on the details of the e-mail server and the application server. We present the ontology mapping technique used to achieve the e-mail content-s categorization as well as the protocols that we have developed to handle the transactions in the e-mail system. Finally, we discuss further on the implementation of the modules presented in the KS-Mail architecture.Keywords: E-mail rating, knowledge-based system, ontology mapping, text categorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448