
Syntax Sensitive and Language Independent
Detection of Code Clones

Kazuaki Maeda

Abstract—This paper proposes a new technique to detect code
clones from the lexical and syntactic point of view, which is based
on PALEX source code representation. The PALEX code contains
the recorded parsing actions and also lexical formatting information
including white spaces and comments. We can record a list of parsing
actions (shift, reduce, and reading a token) during a compiling process
after a compiler finishes analyzing the source code. The proposed
technique has advantages for syntax sensitive approach and language
independency.

Keywords—Code Clones, Source Code Representation, XML,
Parser, Parser Generator

I. INTRODUCTION

“Cut and paste” and “copy and paste” were transfered into
the context of computer-based editing systems in 1970’s[1].
Those user-interface actions eliminate duplicated works and
improve the productivity. It is also useful in the context of
program development during editing source code. The “copy
and paste” activity is called “code cloning,” and the copied
and pasted fragment of source code is called “code clone.”

Many researches show that a significant amount of source
code contains the code clones. One of the works shows that
19% of the source code is cloned in the complete source of
the X Window System[2]. Another work[3] shows that the
average percentage of code clones is 12.7% of all subsystems.
In an extreme case, the average percentage of code clones is
59%[4].

The code clones offer a simple way to reuse source code.
If a fragment of source code is already tested, there are
fewer bugs than source code which is written from scratch.
In another case, the use of particular application program
interfaces (APIs) often require ordered series of procedure
calls to achieve desired behaviors. For example, to develop
GUI applications using the Java Swing APIs, similar orderings
are common with the libraries. Device drivers of operating
systems usually contain large code clones because all the
drivers have the same APIs and most of them implement a
similar logic. In the case of developing a new driver for a
new hardware model, cloning the existing driver prevents the
risk of changing the existing driver[5].

Many techniques to detect the code clones have been
proposed in the past. Sophisticated approaches in the proposed
techniques need to parse source code[3]. Their approaches
provide powerful code clone detection, but they need a parser
for each target programming language, and they are dependent
on the programming languages.

K. Maeda is with the Department of Business Administration and Informa-
tion Science, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501,
Japan e-mail: kaz@acm.org.

Based on my experiences, there are two approaches to
develop a parser. One approach is to develop a parser from
scratch by reading the programming language specification.
There are some cases where it takes more than one week
to develop just only a parser with high quality because the
specification of recently popular programming languages is
complex. Second approach is to get grammar definitions from
major web sites, or find them using web search engines. There
are some web sites including collections of public grammars.
The collections in the web sites are very useful to improve the
productivity of parser development. On the other hand, many
grammar rules contain some errors and there is no guarantee
that they are strictly correct. As a result, we must laboriously
check correctness of the grammars to improve the quality.

The sophisticated approaches using parsers are not appro-
priate to detect code clones if we need language independent
techniques. In the paper[4], they describe that

Most of the approaches are based on parsing tech-
niques and thus rely on having the right parser for
the right dialect for every language that is used
within an organization.
Language dependency is a big obstacle when it
comes to the practical applicability of duplication
detection. We have thus chosen to employ a tech-
nique that is as simple as possible and prove that it
is effective in finding duplication.

Language independency is one of the most important point
to apply the code clone detection in real applications because
there are a lot of programming languages which are currently
available.

This paper describes a technique which detects code clones
from the perspectives of lexical and syntactic analysis, and
also realizes independency of programming languages. It is
based on source code representation, PALEX, which was
proposed by the author[6]. PALEX stands for PArsing actions
and LExical information in Xml, and is generated by modified
compilers.

Section 2 describes related works about the code clone
detection. Section 3 describes briefly the source code represen-
tation PALEX and a clone code detection tool using PALEX.
Section 4 summaries this paper.

II. RELATED WORKS

There are many papers related about the code clone detec-
tion since 1990’s. Typical techniques are categorized in four
approaches;

• Line-based approach[2], [4],
• Token-based approach[7], [8],

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2845International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

30
00

.p
df



• AST-based approach[3], [9], [10], and
• Dependency-based approach[11], [12], [13]

In the paper[8], they describe that
A code clone is a code portion in source files that
is identical or similar to another.

For example, two portions (lines 4-7 and lines 11-14) in Fig.1
are textually identical, but the execution results are different.
According to their definition[8], it naturally indicates that the
two portions are code clones.

1: public class Calc {
2: int x=1;
3: void foo(){
4: for(int i = 0; i < 10; i++){
5: x = x * 2 + 1;
6: }
7: System.out.println(x);
8: }
9: void bar(){

10: int x=1;
11: for(int i = 0; i < 10; i++){
12: x = x * 2 + 1;
13: }
14: System.out.println(x);
15: }
16: }

Fig. 1. Example of code clones

In the line-based approach, whole lines are compared each
by each. It ignores lexical and syntactic information of source
code so that all kinds of plain text file can be processed.
It is independent of programming languages and it is very
convenient for general purposes.

However, there are some limitations on the line-based
approach. If you use a code formating tool, the tool does
not change the syntax but it changes only the locations of
some tokens. Let us imagine that a developer changes the
preferences of indentation and locations of braces, and the
developer executes partially the code formatter tool. In a worst
case, the tool changes only the lines shown in Fig.2 so that
the line-based approach decides the lines of the source code
are totally different and it fails in the code clone detection.

11: for (int i=0;i<10;i++)
12: { x = x * 2 + 1; }

Fig. 2. Example of lines after formatting the code

In the token-based approach, the entire source code is
scanned, a sequence of tokens is built, and the tokens are
compared each by each. CPD[7] is a token-based code clone
detection tool. If CPD reads the source code containing the
lines shown in Fig.2, it detects that the two portions are code
clones and it generates output shown in Fig.3. Interestingly,
in the output, the last token is a brace for end of the method.
The brace is a syntactically meaningless token for code clone

Found a 5 line (30 tokens) duplication in
the following files:
Starting at line 4 of Calc.java
Starting at line 11 of Calc.java

for(int i=0; i < 10; i++){
x = x * 2 + 1;

}
System.out.println(x);

}

Fig. 3. Output of the code clone detection using CPD

detection. If an automatic replacement of the code clones is
implemented, such a token causes problems.

In the AST-based approach, syntax sensitive analysis detects
precisely code clones. Generally, the compiler constructs AST
in syntax analysis. We can get the syntactic information of
source code from the AST. However, it takes much time to
detect code clones using the AST. The author had informally
an experiment using CloneDR1 and CCFinder[8] to analyze
millions of lines of source code. In the case of CCFinder, it
took a few minutes to detect code clones, but CloneDR spends
a lot of time to detect code clones using the AST.

The author and the colleagues are now developing a static
analyzer for Java containing CFG and DFG analysis. The total
of lines of source code is more than one hundred thousands.
We can obtain more precise results related about the code
clones if the static analysis is applied to detect the code
clones. However, if we need code clone detection to another
programming language, it takes much development cost.

All the approaches have some advantages and some dis-
advantages. This paper proposes PALEX-based code clone
detection. The PALEX-based approach is independent of pro-
gramming languages and syntax sensitive detection. Moreover
we don’t need much development costs.

III. LALR PARSER AND PALEX SOURCE CODE
REPRESENTATION

Parser generators, such as Yacc[14] and Bison[15], make
parser development much easier. They read user-defined syn-
tax rules with action codes to be invoked when the syntax
rules are recognized, and they generate LALR parsers. The
generated parsers execute some typical actions and the actions
are called “parsing actions” in this paper.

A. LALR Parser

The LALR parser generated by Yacc or Bison uses two
tables, Action and Goto. The parser executes mainly two
actions: those are shift and reduce. When we develop a parser
using a parser generator Bison, we can build it in a debug
mode to check the actions during parsing.

When the parser generated by Bison is built in the debug
mode and it analyzes an arithmetic expression

1CloneDR is a trademark by Semantic Designs, Inc.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2846International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

30
00

.p
df



1 + 2 * 3
the parser writes debug information to standard output, as
shown in Fig. 4. In the figure, state transitions are shown
using five kinds of lines; “reading a token,” “shifting token,”
“entering state,” “reducing stack by rule, ” and “stack now.”
The PALEX code described in next section contains some of
this debug information.

Reading a token: Next token is token NUM
Shifting token NUM
Entering state 1
Reducing stack by rule 5
Stack now 0 2 6
Entering state 4
Reducing stack by rule 4
Stack now 0 2 6
Entering state 8
Reading a token: Next token is token MLT
Shifting token MLT
Entering state 7
Reading a token: Next token is token NUM
Shifting token NUM

Fig. 4. Debug information written by a generated parser

B. PALEX Source Code Representation

Once a compiler finishes the analysis of the source code,
it can record a list of parsing actions during the parsing
process, which are shift, reduce, and reading a token. PALEX
is represented in XML containing the recorded parsing actions
and lexical formatting information including white spaces and
comments. It has two features:

• It is independent of any programming languages because
there are no language-specific elements and attributes in
the XML document for PALEX. Three software tools for
Java, C#, and Ruby are developed to convert source code
to the PALEX code.

• The original source code can be restored from the PALEX
code because it contains sufficient lexical information to
restore it.

Bison was modified to write out the PALEX code and it is
called MoBison. MoBison reads syntax rules and generates
a special parser that contains functionality to produce the
PALEX code. MoBison is used to embed the functionality in
the parser. Moreover, MoBison generates parsing information
for other software tools to analyze the PALEX code.

MoBison reads the syntax rules and generates the parser.
After the generated parser reads the arithmetic expression
mentioned in the previous section and the parser analyzes it,
it writes out the PALEX code as shown in Fig. 5. The figure
contains the following parsing actions: sft, rdc, lex, and cst.
Moreover it contains a white space using a tag wsc.

TABLE I shows a part of element names in the PALEX
code, and TABLE II shows a part of attribute names. The
names of some elements and attributes are abbreviated because
the size of the XML document should be reduced to save the
storage space. The sft element contains a source of a state
transition in the fr attribute and a destination of the state

<lex st="6" tk="NUM" va="2" li="1" co="5"/>
<sft fr="6" to="1"/>
<rdc st="1" ru="5" ln="1"/>
<cst fr="6" to="4"/>
<rdc st="4" ru="4" ln="1"/>
<cst fr="6" to="8"/>
<wsc va=" "/>
<lex st="8" tk="MLT" va="*" li="1" co="7"/>
<sft fr="8" to="7"/>
<lex st="7" tk="NUM" va="3" li="1" co="9"/>

Fig. 5. Snippet of the PALEX code

TABLE I
ELEMENTS IN PALEX

Name Meaning of the element
wsc white space and/or comments
lex reading a token
sft shift action
rdc reduce action
cst change from a state to another state

TABLE II
ATTRIBUTES IN PALEX

Name Meaning of the attribute
st state number
fr source state number for shift action
to destination state number for shift action
tk type of a token
va string image of a token
li line number
co column number
ru syntax rule number
ln length of right hand side in a rule

transition in the to attribute. The rdc element contains a state
number in the st attribute and a syntax rule number in the ru
attribute. The syntax rule has a unique sequential number that
is internally assigned to identify each rule. The lex element
contains the token information. In Fig. 5, for example, the first
lex element indicates that the type of the token shown in the tk
attribute is NUM , that the string image of the token shown in
the va attribute is 2, and that it starts at the location of line 1
and column 5 as shown in the li attribute and the co attribute,
respectively.

PALEX is independent of programming languages. Fig.6
shows a snippet of PALEX code for C#. The source code in
C# is
using System.IO; // simple statement

and the PALEX tool writes the XML document. Fig.7 shows
another snippet of PALEX code for Ruby. The source code in
Ruby is
include Math

and the PALEX tool writes it using same elements and
attributes. The two figures are represented using same elements
and same attributes in the XML document for PALEX, but
only the programming languages are different. It shows that
PALEX is independent of any programming languages.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2847International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

30
00

.p
df



<?xml version="1.0" encoding="us-ascii"?>
<parseFiles lang="C#" pg="jay" ver="0.4">
<parse name="ex2.cs">
<lex st="0" tk="USING" va="using" li="1" co="1" />
<sft fr="0" to="3" />
<wsc va=" " />
<lex st="3" tk="IDENTIFIER" va="System" li="1"

co="7" />
<sft fr="3" to="30" />
<lex st="30" tk="DOT" va="." li="1" co="13" />
<rdc st="30" ru="319" ln="1" />

...(skip)...
<rdc st="11" ru="10" ln="1" />
<rdc st="9" ru="7" ln="1" />
<wsc va=" // simple statement&#xA;" />
<lex st="6" tk="EOF" va="" li="2" co="2" />

...(skip)...

Fig. 6. Snippet of PALEX code for C#

<?xml version="1.0" encoding="us-ascii"?>
<parseFiles lang="ruby" pg="bison" ver="0.5">
<parse name="ruby.rb">
<rdc st="0" ru="1" />
<cst fr="0" to="2" />
<lex st="2" tk="tIDENTIFIER" va="include" li="1"

co="7" />
<sft fr="2" to="34" />
<wsc va=" " />
<lex st="34" tk="tCONSTANT" va="Math" li="1"

co="0" />
<rdc st="34" ru="477" />
<cst fr="2" to="94" />
<rdc st="94" ru="253" />
<cst fr="94" to="246" />
<sft fr="246" to="38" />
<lex st="38" tk="’\n’" va="&#xA;" li="2" co="1" />

...(skip)...

Fig. 7. Snippet of the PALEX code for Ruby

C. Code Clone Detection

PALEX has a linear list structure containing lexical and
syntactic information. To detect code clones using PALEX, a
suffix-tree matching algorithm[16] is basically used to analyze
sequences of tokens. The suffix tree is a data structure that
represents the suffixes of a given string. For example, if the
string is ABCDABC$ ($ means an end of the string), then it
is split into seven suffixes;

• ABCDABC$
• BCDABC$
• CDABC$
• DABC$
• ABC$
• BC$
• C$

and a suffix tree is built shown in Fig.8. As a result, we can
find that ABC, BC and C are duplicated substrings. If the
suffix tree is applied to a sequence of tokens, it is easy to find
code clones.

It we can get a sequence of tokens, token-based approach
is independent on programming languages. However, there
are some limitations on the token-based approach. It ignores

Fig. 8. Suffix tree for the string ABCDABC$

state 6:
E -> E PLS . T

state 7:
T -> T MLT . F

state 8:
E -> E PLS T .
T -> T . MLT F

state 9:
T -> T MLT F .
<<reduce>>

Fig. 9. Snippet of states for the arithmetic expression

syntactic information of source code. This paper’s approach
is based on the token-based approach using the suffix-tree
matching, but it is modified to apply stack information during
syntax analysis. The technique realizes both syntax sensitive
approach and language independence.

The LALR parser takes actions according to the state
transitions within a state stack. The shift action pushes the
current state on the stack. When the reduce action is applied,
the states on the stack are popped and the parser takes to the
next action.

Fig. 9 shows a snipett of states for the arithmetic expression
specified in Fig. 10. In the syntax rules, each period character
“.” shows the current position during parsing. At state 9, the
syntax rule (T → T MLT F . ) is reduced When the reduce
action is applied at the state 9, the three states (state 8, state 7,
and state 9) are popped like the following steps:

• 0,2,6,8,7,9
• 0,2,6,8,7
• 0,2,6,8
• 0,2,6

E : E PLS T /* rule 1 */
| T /* rule 2 */
;

T : T MLT F /* rule 3 */
| F /* rule 4 */
;

F : NUM /* rule 5 */
;

Fig. 10. Syntax rules for a simple calculation

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2848International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

30
00

.p
df



After it pops the three states (state 8, state 7, and state 9) from
the stack, it returns to state 6 and pushes the next state on the
stack.

Once the parsing actions are recorded after analyzing source
code, we know when and which syntax rule is reduced. In
Fig. 9, the reduce action is applied at the state 9. If we go
backward from the reduce action, we can decide the unique
rule at each state. For example, the following rules in Fig. 9

• T → T . MLT F (in state 8),
• T → T MLT . F (in state 7), and
• T → T MLT F . (in state 9)

are decided after parsing. That is, the region between the stack
state 0,2,6 and the stack state 0,2,6,8,7,9 is the timing during
parsing the rule T → T MLT F. If we want to watch code
clones of only a specified syntax, only the specified region is
analyzed.

IV. CONCLUSIONS

This paper proposes a new technique to detect code clones
from the syntactic point of view, which is based on PALEX
source code representation. It also realizes language indepen-
dency. The PALEX code contains the recorded parsing actions
and also lexical formatting information including white spaces
and comments. We can record a list of parsing actions (shift,
reduce, and reading a token) during a compiling process after a
compiler finishes analyzing the source code. Now source code
of commercial products is trying to analyze for checking the
power of this paper’s approach. The development and results
will be published in a future paper.

REFERENCES

[1] Bill Moggridge, “Designing Interactions,” The MIT Press, 2007.
[2] Brenda .S. Baker, “On Finding Duplication and Near-Duplication in

Large Software Systems,” Working Conferneceo on Reverse Engineering,
pp.86–95, 1995.

[3] Ira D. Baxter, Andrew Yahin, et al., “Clone Detection Using Abstract Syn-
tax Trees,” International Conference on Software Maintenance, pp.368–
377, 1998.

[4] Stéphane Ducasse, Matthias Rieger, Serge Demeyer, “A Language Inde-
pendent Approach for Detecting Duplicated Code,” 15th IEEE Interna-
tional Conference on Software Maintenance, pp.109–118,1999.

[5] Cory Kapser and Michael W. Godfrey, “’Cloning Considered Harmful’
Considered Harmful,” Working Conference on Reverse Engineering,
pp.19–28, 2006.

[6] Kazuaki Maeda, “XML-Based Source Code Representation with Parsing
Actions,” The International Conference on Software Engineering Re-
search and Practice, 2007.

[7] PMD: Finding copied and pasted code, available from
http://pmd.sourceforge.net/cpd.html (accessed 2009-11-28).

[8] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue, “CCFinder: A Mul-
tilinguistic Token-Based Code Clone Detection System for Large Scale
Source Code,” IEEE Transactions on Software Engineering, pp.654–670,
vol.28, no.7, Jul. 2002.

[9] Vera Wahler, Dietmar Seipel, et al., “Clone Detection in Source Code by
Frequent Itemset Techniques,” IEEE International Workshop on Source
Code Analysis and Manipulation, pp.128–135, 2004.

[10] William S. Evans, Christopher W. Fraser, Fei Ma, “Clone Detection via
Structural Abstraction,” Software Quality Journal, vol.17, no.4, pp.309–
330, 2009.

[11] Raghavan Komondoor, Susan Horwitz, “Using Slicing to Identify Du-
plication in Source Code,” pp.40–56, LNCS vol.2126, 2001.

[12] Jens Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Working Conference on Reverse Engineering, pp.301–309,
2001.

[13] Chao Liu, Chen Chen, et al., “GPLAG: Detection of Software Plagiarism
by Program Dependence Graph Analysis,” The 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp.872–881, 2006.

[14] Steven C. Johnson. “Yacc: Yet Another Compiler Compiler,” UNIX
Programmer’s Manual, vol. 2, pp. 353–387, 1979.

[15] Charles Donnelly, Richard Stallman, “Bison – The Yacc-Compatible
Parser Generator,” Free Software Foundation, 2006.

[16] Maxime Crochmore, Christphe Hancart, Thierry Lecroq, “Algorithms
on Strings,” Cambridge University Press, 2001.

Kazuaki Maeda He is an associate professor of
Department of Business Administration and Infor-
mation Science at Chubu University in Japan. He is
a member of ACM, IEEE, IPSJ and IEICE. His re-
search interests are Compiler Construction, Domain
Specific Languages, Object-Oriented Programming,
Software Engineering and Open Source Software.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2849International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

30
00

.p
df




