Search results for: Content language integrated learning
3584 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images
Authors: M. Das Gupta, S. Banerjee
Abstract:
Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.
Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21323583 Factors Affecting the Citizen’s Intention to Adopt E-government in Saudi Arabia
Authors: Sulaiman A. Alateyah, Richard M Crowder, Gary B Wills
Abstract:
This paper discusses E-government, in particular the challenges that face its development and widespread adoption in Saudi Arabia. E-government can be defined based on an existing set of requirements. E-government has been implemented for a considerable time in developed countries. However, E-government services still face many challenges in their implementation and general adoption in Saudi Arabia. In addition, the literature review and the discussion identify the influential factors, such as quality of service, diffusion of innovation, computer and information literacy, culture, lack of awareness, technical infrastructure, website design, and security, that affect the citizens’ intention to adopt E-government services in Saudi Arabia. Consequently, these factors have been integrated in a new model that would influence citizen to adopt E- government services. Therefore, this research presents an integrated model for ascertaining the intention to adopt E-government services and thereby aiding governments in accessing what is required to increase adoption.
Keywords: Adoption, citizens’ intention, E-government, G2C, influential factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39563582 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress
Authors: Kavitha Thamadharan, Nurazean Maarop
Abstract:
The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of eassessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.
Keywords: Secure Technology Acceptance, E-Assessment Security, E-Assessment, Education Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24433581 Morpho-Phonological Modelling in Natural Language Processing
Authors: Eleni Galiotou, Angela Ralli
Abstract:
In this paper we propose a computational model for the representation and processing of morpho-phonological phenomena in a natural language, like Modern Greek. We aim at a unified treatment of inflection, compounding, and word-internal phonological changes, in a model that is used for both analysis and generation. After discussing certain difficulties cuase by well-known finitestate approaches, such as Koskenniemi-s two-level model [7] when applied to a computational treatment of compounding, we argue that a morphology-based model provides a more adequate account of word-internal phenomena. Contrary to the finite state approaches that cannot handle hierarchical word constituency in a satisfactory way, we propose a unification-based word grammar, as the nucleus of our strategy, which takes into consideration word representations that are based on affixation and [stem stem] or [stem word] compounds. In our formalism, feature-passing operations are formulated with the use of the unification device, and phonological rules modeling the correspondence between lexical and surface forms apply at morpheme boundaries. In the paper, examples from Modern Greek illustrate our approach. Morpheme structures, stress, and morphologically conditioned phoneme changes are analyzed and generated in a principled way.
Keywords: Morpho-Phonology, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21373580 A Visual Control Flow Language and Its Termination Properties
Authors: László Lengyel, Tihamér Levendovszky, Hassan Charaf
Abstract:
This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations out of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This work discusses the termination properties of VCFL and provides an algorithm to support the termination analysis of VCFL transformations.
Keywords: Control Flow, Metamodel-Based Visual Model Transformation, OCL, Termination Properties, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20733579 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber
Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He
Abstract:
As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.
Keywords: 3D printed, carbon fiber, fiber content, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7803578 Grouping and Indexing Color Features for Efficient Image Retrieval
Authors: M. V. Sudhamani, C. R. Venugopal
Abstract:
Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.
Keywords: Content-based, indexing, cluster, region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18163577 Exploring the Potential of Chatbots in Higher Education: A Preliminary Study
Authors: S. Studente, S. Ellis, S. F. Garivaldis
Abstract:
We report upon a study introducing a chatbot to develop learning communities at a London University, with a largely international student base. The focus of the chatbot was twofold; to ease the transition for students into their first year of university study, and to increase study engagement. Four learning communities were created using the chatbot; level 3 foundation, level 4 undergraduate, level 6 undergraduate and level 7 post-graduate. Students and programme leaders were provided with access to the chat bot via mobile app prior to their study induction and throughout the autumn term of 2019. At the end of the term, data were collected via questionnaires and focus groups with students and teaching staff to allow for identification of benefits and challenges. Findings indicated a positive correlation between study engagement and engagement with peers. Students reported that the chatbot enabled them to obtain support and connect to their programme leader. Both staff and students also made recommendation on how engagement could be further enhanced using the bot in terms of; clearly specified purpose, integration with existing university systems, leading by example and connectivity. Extending upon these recommendations, a second pilot study is planned for September 2020, for which the focus will be upon improving attendance rates, student satisfaction and module pass rates.
Keywords: Chatbot, e-learning, learning communities, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17433576 A VR Cybersecurity Training Knowledge-Based Ontology
Authors: Shaila Rana, Wasim Alhamdani
Abstract:
Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may provide a training format that is engaging, interactive, and entertaining. A methodological approach and framework are needed to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts to develop VR training to create a relevant methodology for creating VR cybersecurity training modules.
Keywords: Virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6003575 Chewing behavior and Bolus Properties as Affected by Different Rice Types
Authors: Anuchita Moongngarm, John E. Bronlund, Nigel Grigg, Naruemon Sriwai
Abstract:
The study aimed to investigate the effect of rice types on chewing behaviours (chewing time, number of chews, and portion size) and bolus properties (bolus moisture content, solid loss, and particle size distribution (PSD)) in human subjects. Five cooked rice types including brown rice (BR), white rice (WR), parboiled white rice (PR), high amylose white rice (HR) and waxy white rice (WXR) were chewed by six subjects. The chewing behaviours were recorded and the food boluses were collected during mastication. Rice typeswere found to significantly influence all chewing parameters evaluated. The WXR and BR showed the most pronounced differences compared with other rice types. The initial moisture content of un-chewed WXR was lowest (43.39%) whereas those of other rice types were ranged from 66.86 to 70.33%. The bolus obtained from chewing the WXR contained lowest moisture content (56.43%) whilst its solid loss (22.03%) was not significant different from those of all rice types. In PSD evaluation using Mastersizer S, the diameter of particles measured was ranged between 4 to 3500 μm. The particle size of food bolus from BR, HR, and WXR contained much finer particles than those of WR and PR.
Keywords: Chewing behavior, Mastication, Rice, Rice types, Bolus properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18423574 Optimizing Mobile Agents Migration Based on Decision Tree Learning
Authors: Yasser k. Ali, Hesham N. Elmahdy, Sanaa El Olla Hanfy Ahmed
Abstract:
Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.
Keywords: Agent Migration, Decision Tree learning, ID3 algorithm, Naive Bayes Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19993573 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier
Authors: Montree Kumngern, Kobchai Dejhan
Abstract:
Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22913572 An Integrated Logistics Model of Spare Parts Maintenance Planning within the Aviation Industry
Authors: Roy Fritzsche, Rainer Lasch
Abstract:
Avoidable unscheduled maintenance events and unnecessary spare parts deliveries are mostly caused by an incorrect choice of the underlying maintenance strategy. For a faster and more efficient supply of spare parts for aircrafts of an airline we examine options for improving the underlying logistics network integrated in an existing aviation industry network. This paper presents a dynamic prediction model as decision support for maintenance method selection considering requirements of an entire flight network. The objective is to guarantee a high supply of spare parts by an optimal interaction of various network levels and thus to reduce unscheduled maintenance events and minimize total costs. By using a prognostics-based preventive maintenance strategy unscheduled component failures are avoided for an increase in availability and reliability of the entire system. The model is intended for use in an aviation company that utilizes a structured planning process based on collected failures data of components.Keywords: Aviation industry, Prognosis, Reliability, Preventive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45483571 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study
Authors: Mahmoud I. Syam, Osama K. El-Hafy
Abstract:
With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.Keywords: Learning, motivating, student, teacher, testing hypotheses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11473570 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.
Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4603569 Validating Condition-Based Maintenance Algorithms Through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both Machine Learning and First Principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed from breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems and humans – including asset maintenance operations – in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.
Keywords: Degradation models, ageing, anomaly detection, soft sensor, incremental learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423568 An Investigation of Community Radio Broadcasting in Phutthamonthon District, Nakhon Pathom, Thailand
Authors: Anchana Sooksomchitra
Abstract:
This study aims to explore and compare the current condition of community radio stations in Phutthamonthon district, Nakhon Pathom province, Thailand, as well as the challenges they are facing. Qualitative research tools including in-depth interviews; documentary analysis; focus group interviews; and observation, are used to examine the content, programming, and management structure of three community radio stations currently in operation within the district. Research findings indicate that the management and operational approaches adopted by the two non-profit stations included in the study, Salaya Pattana and Voice of Dhamma, are more structured and effective than that of the for-profit Tune Radio. Salaya Pattana – backed by the Faculty of Engineering, Mahidol University, and the charity-funded Voice of Dhamma, are comparatively free from political and commercial influence, and able to provide more relevant and consistent community-oriented content to meet the real demand of the audience. Tune Radio, on the other hand, has to rely solely on financial support from political factions and business groups, which heavily influence its content.Keywords: Radio broadcasting, programming, management, community radio, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11403567 Spatial Variability of Brahmaputra River Flow Characteristics
Authors: Hemant Kumar
Abstract:
Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.
Keywords: Spatial analysis, change detection, aerosol, trend analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5543566 Automatic Recognition of Emotionally Coloured Speech
Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou
Abstract:
Emotion in speech is an issue that has been attracting the interest of the speech community for many years, both in the context of speech synthesis as well as in automatic speech recognition (ASR). In spite of the remarkable recent progress in Large Vocabulary Recognition (LVR), it is still far behind the ultimate goal of recognising free conversational speech uttered by any speaker in any environment. Current experimental tests prove that using state of the art large vocabulary recognition systems the error rate increases substantially when applied to spontaneous/emotional speech. This paper shows that recognition rate for emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances.Keywords: Statistical language model, N-grams, emotionallycoloured speech
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16263565 The Development and Future of Hong Kong Typography
Authors: Amic G. Ho
Abstract:
Language usage and typography in Hong Kong are unique, as can be seen clearly on the streets of the city. In contrast to many other parts of the world, where there is only one language, in Hong Kong many signs and billboards display two languages: Chinese and English. The language usage on signage, fonts and types used, and the designs in magazines and advertisements all demonstrate the unique features of Hong Kong typographic design, which reflect the multicultural nature of Hong Kong society. This study is the first step in investigating the nature and development of Hong Kong typography. The preliminary research explored how the historical development of Hong Kong is reflected in its unique typography. Following a review of historical development, a quantitative study was designed: Local Hong Kong participants were invited to provide input on what makes the Hong Kong typographic style unique. Their input was collected and analyzed. This provided us with information about the characteristic criteria and features of Hong Kong typography, as recognized by the local people. The most significant typographic designs in Hong Kong were then investigated and the influence of Chinese and other cultures on Hong Kong typography was assessed. The research results provide an indication to local designers on how they can strengthen local design outcomes and promote the values and culture of their mother town.
Keywords: Typography, Hong Kong, historical developments, multiple cultures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15843564 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Tami Alghamdi, Terence Soule
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.
Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3693563 Remote Training with Self-Assessment in Electrical Engineering
Authors: Zoja Raud, Valery Vodovozov
Abstract:
The paper focuses on the distance laboratory organisation for training the electrical engineering staff and students in the fields of electrical drive and power electronics. To support online knowledge acquisition and professional enhancement, new challenges in remote education based on an active learning approach with self-assessment have been emerged by the authors. Following the literature review and explanation of the improved assessment methodology, the concept and technological basis of the labs arrangement are presented. To decrease the gap between the distance study of the up-to-date equipment and other educational activities in electrical engineering, the improvements in the following-up the learners’ progress and feedback composition are introduced. An authoring methodology that helps to personalise knowledge acquisition and enlarge Web-based possibilities is described. Educational management based on self-assessment is discussed.Keywords: Advanced training, active learning, distance learning, electrical engineering, remote laboratory, self-assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21373562 Utilization of Advanced Data Storage Technology to Conduct Construction Industry on Clear Environment
Authors: Javad Majrouhi Sardroud, Mukesh C. Limbachiya
Abstract:
Construction projects generally take place in uncontrolled and dynamic environments where construction waste is a serious environmental problem in many large cities. The total amount of waste and carbon dioxide emissions from transportation vehicles are still out of control due to increasing construction projects, massive urban development projects and the lack of effective tools for minimizing adverse environmental impacts in construction. This research is about utilization of the integrated applications of automated advanced tracking and data storage technologies in the area of environmental management to monitor and control adverse environmental impacts such as construction waste and carbon dioxide emissions. Radio Frequency Identification (RFID) integrated with the Global Position System (GPS) provides an opportunity to uniquely identify materials, components, and equipments and to locate and track them using minimal or no worker input. The transmission of data to the central database will be carried out with the help of Global System for Mobile Communications (GSM).Keywords: Clear environment, Construction industry, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18743561 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11103560 Dental Students’ Attitude towards Problem-Based Learning before and after Implementing 3D Electronic Dental Models
Authors: Hai Ming Wong, Kuen Wai Ma, Lavender Yu Xin Yang, Yanqi Yang
Abstract:
Objectives: In recent years, the Faculty of Dentistry of the University of Hong Kong have extended the implementation of 3D electronic models (e-models) into problem-based learning (PBL) of the Bachelor of Dental Surgery (BDS) curriculum, aiming at mutual enhancement of PBL teaching quality and the students’ skills in using e-models. This study focuses on the effectiveness of e-models serving as a tool to enhance the students’ skills and competences in PBL. Methods: The questionnaire surveys are conducted to measure 50 fourth-year BDS students’ attitude change between beginning and end of blended PBL tutorials. The response rate of this survey is 100%. Results: The results of this study show the students’ agreement on enhancement of their learning experience after e-model implementation and their expectation to have more blended PBL courses in the future. The potential of e-models in cultivating students’ self-learning skills reduces their dependence on others, while improving their communication skills to argue about pros and cons of different treatment options. The students’ independent thinking ability and problem solving skills are promoted by e-model implementation, resulting in better decision making in treatment planning. Conclusion: It is important for future dental education curriculum planning to cope with the students’ needs, and offer support in the form of software, hardware and facilitators’ assistance for better e-model implementation.
Keywords: Problem-Based learning, curriculum, dental education, 3-D electronic models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66513559 The Framework for Adaptive Games for Mobile Application Using Neural Networks
Authors: Widodo Budiharto, Michael Yoseph Ricky, Ro'fah Nur Rachmawati
Abstract:
The rapid development of the BlackBerry games industry and its development goals were not just for entertainment, but also used for educational of students interactively. Unfortunately the development of adaptive educational games on BlackBerry in Indonesian language that interesting and entertaining for learning process is very limited. This paper shows the research of development of novel adaptive educational games for students who can adjust the difficulty level of games based on the ability of the user, so that it can motivate students to continue to play these games. We propose a method where these games can adjust the level of difficulty, based on the assessment of the results of previous problems using neural networks with three inputs in the form of percentage correct, the speed of answer and interest mode of games (animation / lessons) and 1 output. The experimental results are presented and show the adaptive games are running well on mobile devices based on BlackBerry platform
Keywords: Adaptive games, neural networks, mobile games, BlackBerry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18493558 Prediction of a Human Facial Image by ANN using Image Data and its Content on Web Pages
Authors: Chutimon Thitipornvanid, Siripun Sanguansintukul
Abstract:
Choosing the right metadata is a critical, as good information (metadata) attached to an image will facilitate its visibility from a pile of other images. The image-s value is enhanced not only by the quality of attached metadata but also by the technique of the search. This study proposes a technique that is simple but efficient to predict a single human image from a website using the basic image data and the embedded metadata of the image-s content appearing on web pages. The result is very encouraging with the prediction accuracy of 95%. This technique may become a great assist to librarians, researchers and many others for automatically and efficiently identifying a set of human images out of a greater set of images.Keywords: Metadata, Prediction, Multi-layer perceptron, Human facial image, Image mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12193557 Catalytic Aquathermolysis of Egyptian Heavy Crude Oil
Authors: S. Desouky, A. Al sabagh , M. Betiha, A. Badawi, A. Ghanem, S. Khalil
Abstract:
Two Amphiphilic catalysts, iron (III) dodecylbenzene sulfonate and nickel (II) dodecylbenzene sulfonate, were synthesized and used in the catalytic aquathermolysis of heavy crude oil to reduce its viscosity. The prepared catalysts exhibited good performance in the aquathermolysis and the viscosity is reduced by ~ 78.9 % for Egyptian heavy crude oil. The chemical and physical properties of heavy oil both before and after reaction were investigated by FT-IR, dynamic viscosity, molecular weight and SARA analysis. The results indicated that the content of resin, asphaltene, average molecular weight and sulfur content of heavy oil is reduced after the catalytic aquathermolysis.
Keywords: Amphiphilic catalyst, Aquathermolysis, Heavy oil, Viscosity reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45363556 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17693555 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm
Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas
Abstract:
Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917