Search results for: High impedance fault and Artificial Neural Network.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9036

Search results for: High impedance fault and Artificial Neural Network.

7656 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata

Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi

Abstract:

Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.

Keywords: Resource discovery, learning automata, neural network, economic policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
7655 The Reliability of Wireless Sensor Network

Authors: B. Juhasova, I. Halenar, M. Juhas

Abstract:

The wireless communication is one of the widely used methods of data transfer at the present days. The benefit of this communication method is the partial independence of the infrastructure and the possibility of mobility. In some special applications it is the only way how to connect. This paper presents some problems in the implementation of a sensor network connection for measuring environmental parameters in the area of manufacturing plants.

Keywords: Network, communication, reliability, sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
7654 Transformer Diagnosis Based on Coupled Circuits Method Modelling

Authors: Labar Hocine, Rekik Badri, Bounaya Kamel, Kelaiaia Mounia Samira

Abstract:

Diagnostic goal of transformers in service is to detect the winding or the core in fault. Transformers are valuable equipment which makes a major contribution to the supply security of a power system. Consequently, it is of great importance to minimize the frequency and duration of unwanted outages of power transformers. So, Frequency Response Analysis (FRA) is found to be a useful tool for reliable detection of incipient mechanical fault in a transformer, by finding winding or core defects. The authors propose as first part of this article, the coupled circuits method, because, it gives most possible exhaustive modelling of transformers. And as second part of this work, the application of FRA in low frequency in order to improve and simplify the response reading. This study can be useful as a base data for the other transformers of the same categories intended for distribution grid.

Keywords: Diagnostic, Coupled Circuit Method, FRA, Transformer Faults

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
7653 Diagnosis of Static, Dynamic and Mixed Eccentricity in Line Start Permanent Magnet Synchronous Motor by Using FEM

Authors: Mohamed Moustafa Mahmoud Sedky

Abstract:

In Line start permanent magnet synchronous motor,  eccentricity is a common fault that can make it necessary to remove  the motor from the production line. However, because the motor may  be inaccessible, diagnosing the fault is not easy. This paper presents  an FEM that identifies different models, static eccentricity, dynamic  eccentricity, and mixed eccentricity, at no load and full load. The  method overcomes the difficulty of applying FEMs to transient  behavior. It simulates motor speed, torque and flux density  distribution along the air gap for SE,DE, and ME. This paper  represents the various effects of different eccentricitiestypes on the  transient performance.

Keywords: Line Start Permanent magnet, synchronous machine, Static Eccentricity, Dynamic Eccentricity, Mixed Eccentricity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3627
7652 Distributed Multi-Agent Based Approach on an Intelligent Transportation Network

Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar

Abstract:

With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of human, vehicle, roadside infrastructure and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the paper proposes a distributed multi-agent C-ITS. The system consists of Roadside Subsystem, Vehicle Subsystem and Personal Subsystem. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.

Keywords: Distributed system, artificial intelligence, multi-agent, Cooperative Intelligent Transportation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
7651 Molecular Evolutionary Analysis of Yeast Protein Interaction Network

Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka

Abstract:

To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.

Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
7650 Locating Critical Failure Surface in Rock Slope Stability with Hybrid Model Based on Artificial Immune System and Cellular Learning Automata (CLA-AIS)

Authors: Ramin Javadzadeh, Emad Javadzadeh

Abstract:

Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular learning automata is proposed. The results show that the algorithm is an effective and efficient optimization method with a high level of confidence rate.

Keywords: CLA-AIS, failure surface, optimization methods, rock slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
7649 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: Adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
7648 Utilizing Innovative Techniques to Improve Email Security

Authors: Amany M. Alshawi, Khaled Alduhaiman

Abstract:

This paper proposes a technique to protect against email bombing. The technique employs a statistical approach, Naïve Bayes (NB), and Neural Networks to show that it is possible to differentiate between good and bad traffic to protect against email bombing attacks. Neural networks and Naïve Bayes can be trained by utilizing many email messages that include both input and output data for legitimate and non-legitimate emails. The input to the model includes the contents of the body of the messages, the subject, and the headers. This information will be used to determine if the email is normal or an attack email. Preliminary tests suggest that Naïve Bayes can be trained to produce an accurate response to confirm which email represents an attack.

Keywords: Email bombing, Legitimate email, Naïve Bayes, Neural networks, Non-legitimate email.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
7647 A Fault Tolerant Token-based Algorithm for Group Mutual Exclusion in Distributed Systems

Authors: Abhishek Swaroop, Awadhesh Kumar Singh

Abstract:

The group mutual exclusion (GME) problem is a variant of the mutual exclusion problem. In the present paper a token-based group mutual exclusion algorithm, capable of handling transient faults, is proposed. The algorithm uses the concept of dynamic request sets. A time out mechanism is used to detect the token loss; also, a distributed scheme is used to regenerate the token. The worst case message complexity of the algorithm is n+1. The maximum concurrency and forum switch complexity of the algorithm are n and min (n, m) respectively, where n is the number of processes and m is the number of groups. The algorithm also satisfies another desirable property called smooth admission. The scheme can also be adapted to handle the extended group mutual exclusion problem.

Keywords: Dynamic request sets, Fault tolerance, Smoothadmission, Transient faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
7646 Applying Case-Based Reasoning in Supporting Strategy Decisions

Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami

Abstract:

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
7645 A Power Reduction Technique for Built-In-Self Testing Using Modified Linear Feedback Shift Register

Authors: Mayank Shakya, Soundra Pandian. K. K

Abstract:

A linear feedback shift register (LFSR) is proposed which targets to reduce the power consumption from within. It reduces the power consumption during testing of a Circuit Under Test (CUT) at two stages. At first stage, Control Logic (CL) makes the clocks of the switching units of the register inactive for a time period when output from them is going to be same as previous one and thus reducing unnecessary switching of the flip-flops. And at second stage, the LFSR reorders the test vectors by interchanging the bit with its next and closest neighbor bit. It keeps fault coverage capacity of the vectors unchanged but reduces the Total Hamming Distance (THD) so that there is reduction in power while shifting operation.

Keywords: Linear Feedback Shift Register, Total Hamming Distance, Fault Coverage, Control Logic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
7644 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: Fashion, infringement, Blockchain, artificial intelligence, textiles supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
7643 The Genesis of the Anomalous Sernio Fan, Valtellina, Northern Italy

Authors: E. De Finis, P. Gattinoni, L. Scesi

Abstract:

Massive rock avalanches formed some of the largest landslide deposits on Earth and they represent one of the major geohazards in high-relief mountains. This paper interprets a very large sedimentary fan (the Sernio fan, Valtellina, Northern Italy), located 20 Km SW from Val Pola Rock avalanche (1987), as the deposit of a partial collapse of a Deep Seated Gravitational Slope Deformation (DSGSD), afterwards eroded and buried by debris flows. The proposed emplacement sequence has been reconstructed based on geomorphological, structural and mechanical evidences. The Sernio fan is actually considered anomalous with reference to the very high ratio between the fan area (≈ 4.5km2) and the basin area (≈ 3km2). The morphology of the fan area is characterised by steep slopes (dip ≈ 20%) and the fan apex is extended for 1.8 km inside the small catchment basin. This sedimentary fan was originated by a landslide that interested a part of a large deep-seated gravitational slope deformation, involving a wide area of about 55 km². The main controlling factor is tectonic and it is related to the proximity to regional fault systems and the consequent occurrence of fault weak rocks (GSI locally lower than 10 with compressive stress lower than 20MPa). Moreover, the fan deposit shows sedimentary evidences of recent debris flow events. The best current explanation of the Sernio fan involves an initial failure of some hundreds of Mm3. The run-out was quite limited because of the morphology of Valtellina’s valley floor, and the deposit filled the main valley forming a landslide dam, as confirmed by the lacustrine deposits detected upstream the fan. Nowadays the debris flow events represent the main hazard in the study area.

Keywords: Anomalous sedimentary fans, debris flow, deep seated gravitational slope deformation, Italy, rock avalanche.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
7642 Neuron-Based Control Mechanisms for a Robotic Arm and Hand

Authors: Nishant Singh, Christian Huyck, Vaibhav Gandhi, Alexander Jones

Abstract:

A robotic arm and hand controlled by simulated neurons is presented. The robot makes use of a biological neuron simulator using a point neural model. The neurons and synapses are organised to create a finite state automaton including neural inputs from sensors, and outputs to effectors. The robot performs a simple pick-and-place task. This work is a proof of concept study for a longer term approach. It is hoped that further work will lead to more effective and flexible robots. As another benefit, it is hoped that further work will also lead to a better understanding of human and other animal neural processing, particularly for physical motion. This is a multidisciplinary approach combining cognitive neuroscience, robotics, and psychology.

Keywords: Robot, neuron, cell assembly, spiking neuron, force sensitive resistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
7641 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5536
7640 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: Exciton, Refractive index change, Extinction ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
7639 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems

Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang

Abstract:

The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.

Keywords: Combinatorial problems, Sequential Pattern Mining, Estimation of Distribution Algorithms, Artificial Chromosomes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
7638 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
7637 Optimization of Transmission Lines Loading in TNEP Using Decimal Codification Based GA

Authors: H. Shayeghi, M. Mahdavi

Abstract:

Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e., expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using genetic algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. Finally, adequacy index could be defined and used to compare some designs that have different investment costs and adequacy rates. In this paper, the proposed idea has been tested on the Garvers network. The results show that the network will possess maximum efficiency economically.

Keywords: Adequacy Optimization, Transmission Expansion Planning, DCGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
7636 Categorization and Estimation of Relative Connectivity of Genes from Meta-OFTEN Network

Authors: U. Kairov, T. Karpenyuk, E. Ramanculov, A. Zinovyev

Abstract:

The most common result of analysis of highthroughput data in molecular biology represents a global list of genes, ranked accordingly to a certain score. The score can be a measure of differential expression. Recent work proposed a new method for selecting a number of genes in a ranked gene list from microarray gene expression data such that this set forms the Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between genes or their products. Here we present calculation results of relative connectivity of genes from META-OFTEN network and tentative biological interpretation of the most reproducible signal. The relative connectivity and inbetweenness values of genes from META-OFTEN network were estimated.

Keywords: Microarray, META-OFTEN, gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
7635 Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses

Authors: Xiaomei Wang, Shouming Zhong

Abstract:

In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.

Keywords: Bi-directional associative memory (BAM) neural networks, mixed delays, Lyapunov stability theory, contraction mapping theorem, existence, equilibrium, globally exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
7634 An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks

Authors: K. Geetha, P. Thangaraj

Abstract:

Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.

Keywords: Mobile Ad hoc Networks (MANET), Associativity Based Routing (ABR), Fuzzy based Computed Trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
7633 Characterisation and Classification of Natural Transients

Authors: Ernst D. Schmitter

Abstract:

Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automisation of the detection and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for analysis and characterisation of transients and as input into a radial basis function network that is trained to discriminate transients from pulse like to wave like.

Keywords: transient signals, statistics, wavelets, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
7632 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network

Authors: Siavash Asadi Ghajarloo

Abstract:

Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.

Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
7631 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip

Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner

Abstract:

This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.

Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
7630 A High Level Implementation of a High Performance Data Transfer Interface for NoC

Authors: Mansi Jhamb, R. K. Sharma, A. K. Gupta

Abstract:

The distribution of a single global clock across a chip has become the major design bottleneck for high performance VLSI systems owing to the power dissipation, process variability and multicycle cross-chip signaling. A Network-on-Chip (NoC) architecture partitioned into several synchronous blocks has become a promising approach for attaining fine-grain power management at the system level. In a NoC architecture the communication between the blocks is handled asynchronously. To interface these blocks on a chip operating at different frequencies, an asynchronous FIFO interface is inevitable. However, these asynchronous FIFOs are not required if adjacent blocks belong to the same clock domain. In this paper, we have designed and analyzed a 16-bit asynchronous micropipelined FIFO of depth four, with the awareness of place and route on an FPGA device. We have used a commercially available Spartan 3 device and designed a high speed implementation of the asynchronous 4-phase micropipeline. The asynchronous FIFO implemented on the FPGA device shows 76 Mb/s throughput and a handshake cycle of 109 ns for write and 101.3 ns for read at the simulation under the worst case operating conditions (voltage = 0.95V) on a working chip at the room temperature.

Keywords: Asynchronous, FIFO, FPGA, GALS, Network-on- Chip (NoC), VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
7629 Probabilistic Modeling of Network-induced Delays in Networked Control Systems

Authors: Manoj Kumar, A.K. Verma, A. Srividya

Abstract:

Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.

Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
7628 Time Organization for Urban Mobility Decongestion: A Methodology for People’s Profile Identification

Authors: Yassamina Berkane, Leïla Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a methodology for predicting peoples’ intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples’ intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: Urban mobility, decongestion, machine learning, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
7627 Methodology of the Energy Supply Disturbances Affecting Energy System

Authors: J. Augutis, R. Krikstolaitis, L. Martisauskas

Abstract:

Recently global concerns for the energy security have steadily been on the increase and are expected to become a major issue over the next few decades. Energy security refers to a resilient energy system. This resilient system would be capable of withstanding threats through a combination of active, direct security measures and passive or more indirect measures such as redundancy, duplication of critical equipment, diversity in fuel, other sources of energy, and reliance on less vulnerable infrastructure. Threats and disruptions (disturbances) to one part of the energy system affect another. The paper presents methodology in theoretical background about energy system as an interconnected network and energy supply disturbances impact to the network. The proposed methodology uses a network flow approach to develop mathematical model of the energy system network as the system of nodes and arcs with energy flowing from node to node along paths in the network.

Keywords: Energy Security, Energy Supply Disturbances, Modeling of Energy System, Network Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404