Search results for: vector field convolution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3149

Search results for: vector field convolution.

1829 Educational use of Interactive Multimedia based on Museum Collection

Authors: Ji-Hye Lee, Jongdeok Kim

Abstract:

This research investigates the use of digital technology namely interactive multimedia in effective art education provided by museum. Several multimedia experience examples created for art education are study case subjected to assistance audiences- learning within the context of existing theory in the field of interactive multimedia.

Keywords: E-learning, Fine Arts, Interactivity, Multimedia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1828 Electrically Conducting Lubricants: Esterified Carbon Nanotubes

Authors: Wei Chin, Wen-Kuang Hsu

Abstract:

Fats and oils are made of esterified hydrocarbons (RCOOR-) and this work demonstrates the substitution of R by multi-walled CNTs (MWNTs). The resultant materials are fluidic, oily, electrically conducting and excellent lubricants. Esterified MWNTs can also respond to magnetic field when tubules contain long segments of Fe

Keywords: Liquids Nanomaterials Electric conductors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1827 The Secrecy Underlying Young Language Learners- Learning

Authors: Nima Shakouri Masouleh, Razieh Bahraminezhad Jooneghani

Abstract:

The study investigated the educational implications that can be derived from the work of a variety of celebrated figures such as Piaget, Vygotsky, and Bruner that will be helpful in the field of language learning. However, the writer believed these views were previously expressed not full–fledged by Comenius who has been described by Howatt (1984) as a genius–the one that the history of language teaching can claim. And we owe to him more than anyone.

Keywords: restructuring, assimilation, equiliberation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
1826 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317
1825 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation

Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen

Abstract:

In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.

Keywords: Air tunnel, ground heat exchanger, raft foundation, residential building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
1824 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: Electrophoretic deposition, graphene oxide, electrical conductivity, electro-optical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
1823 Numerical Studies on Thrust Vectoring Using Shock Induced Supersonic Secondary Jet

Authors: Jerin John, Subanesh Shyam R., Aravind Kumar T. R., Naveen N., Vignesh R., Krishna Ganesh B, Sanal Kumar V. R.

Abstract:

Numerical studies have been carried out using a validated two-dimensional RNG k-epsilon turbulence model for the design optimization of a thrust vector control system using shock induced supersonic secondary jet. Parametric analytical studies have been carried out with various secondary jets at different divergent locations, jet interaction angles, jet pressures. The results from the parametric studies of the case on hand reveal that the primary nozzle with a small divergence angle, downstream injections with a distance of 2.5 times the primary nozzle throat diameter from the primary nozzle throat location warrant higher efficiency over a certain range of jet pressures and jet angles. We observed that the supersonic secondary jet opposing the core flow with jets interaction angle of 40o to the axis far downstream of the nozzle throat facilitates better thrust vectoring than the secondary jet with same direction as that of core flow with various interaction angles. We concluded that fixing of the supersonic secondary jet nozzle pointing towards the throat direction with suitable angle at a distance 2 to 4 times of the primary nozzle throat diameter, as the case may be, from the primary nozzle throat location could facilitate better thrust vectoring for the supersonic aerospace vehicles.

Keywords: Fluidic thrust vectoring, rocket steering, supersonic secondary jet location, TVC in spacecraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3656
1822 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States

Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi

Abstract:

The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.

Keywords: Economic growth, energy demand, income, real GDP, urbanization, VECM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
1821 Selecting Negative Examples for Protein-Protein Interaction

Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae

Abstract:

Proteomics is one of the largest areas of research for bioinformatics and medical science. An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. Predicting Protein-Protein Interaction (PPI) is one of the crucial and decisive problems in current research. Genomic data offer a great opportunity and at the same time a lot of challenges for the identification of these interactions. Many methods have already been proposed in this regard. In case of in-silico identification, most of the methods require both positive and negative examples of protein interaction and the perfection of these examples are very much crucial for the final prediction accuracy. Positive examples are relatively easy to obtain from well known databases. But the generation of negative examples is not a trivial task. Current PPI identification methods generate negative examples based on some assumptions, which are likely to affect their prediction accuracy. Hence, if more reliable negative examples are used, the PPI prediction methods may achieve even more accuracy. Focusing on this issue, a graph based negative example generation method is proposed, which is simple and more accurate than the existing approaches. An interaction graph of the protein sequences is created. The basic assumption is that the longer the shortest path between two protein-sequences in the interaction graph, the less is the possibility of their interaction. A well established PPI detection algorithm is employed with our negative examples and in most cases it increases the accuracy more than 10% in comparison with the negative pair selection method in that paper.

Keywords: Interaction graph, Negative training data, Protein-Protein interaction, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1820 Being a Lay Partner in Jesuit Higher Education in the Philippines: A Grounded Theory Application

Authors: Janet B. Badong-Badilla

Abstract:

In Jesuit universities, laypersons, who come from the same or different faith backgrounds or traditions, are considered as collaborators in mission. The Jesuits themselves support the contributions of the lay partners in realizing the mission of the Society of Jesus and recognize the important role that they play in education. This study aims to investigate and generate particular notions and understandings of lived experiences of being a lay partner in Jesuit universities in the Philippines, particularly those involved in higher education. Using the qualitative approach as introduced by grounded theorist Barney Glaser, the lay partners’ concept of being a partner, as lived in higher education, is generated systematically from the data collected in the field primarily through in-depth interviews, field notes and observations. Glaser’s constant comparative method of analysis of data is used going through the phases of open coding, theoretical coding, and selective coding from memoing to theoretical sampling to sorting and then writing. In this study, Glaser’s grounded theory as a methodology will provide a substantial insight into and articulation of the layperson’s actual experience of being a partner of the Jesuits in education. Such articulation provides a phenomenological approach or framework to an understanding of the meaning and core characteristics of Jesuit-Lay partnership in Jesuit educational institution of higher learning in the country. This study is expected to provide a framework or model for lay partnership in academic institutions that have the same practice of having lay partners in mission.

Keywords: Grounded theory, Jesuit mission in higher education, lay partner, lived experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
1819 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 412
1818 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
1817 Improvement of Stator Slot Structure based on Electro-Thermal Analysis in HV Generator

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetically and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.

Keywords: Electromagnetic field, field distribution, insulation, winding, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1816 Use of GIS for the Performance Evaluation of Canal Irrigation System in Rice Wheat Cropping Zone

Authors: Umm-e- Kalsoom, M. Arshad, Sadia Iqbal, M. Usman, M. Adnan

Abstract:

The research study evaluated the performance of irrigation system by using special scientific tools like Remote Sensing and GIS technology, so that proper measurements could be taken for the sustainable agriculture and water management. Different performance evaluation parameters had been calculated for the purposed data was gathered from field investigation and different government and private organizations. According to the calculations, organic matter ranges from 0.19% (low value) to 0.76% (high value). In flat irrigation system for wheat yield ranges from 3347.16 to 5260.39 kg/ha, while the total water applied to wheat crop ranges from 252.94 to 279.19 mm and WUE ranges from 13.07 to 18.37 kg/ha/mm. For rice yield ranges from 3347.47 to 5433.07 kg/ha with total water supplied to rice crop ranges from 764.71 to 978.15 mm and WUE ranges from 3.49 to 5.71 kg/ha/mm. Similarly, in raised bed system wheat yield ranges from 4569.13 to 6008.60 kg/ha, total water supplied ranges from 158.87 to 185.09 mm and WUE ranges from 27.20 to 33.54 kg/ha/mm while in rice crop, yield ranges from 5285.04 to 6716.69 kg/ha, total water supplied ranges from 600.72 to 755.06 mm and WUE ranges from 6.41 to 10.05 kg/ha/mm. Almost 51.3% water saving is observed in bed irrigation system as compared to flat system. Less water supplied to beds is more affective as its WUE value is higher than flat system where more water is supplied in both the seasons. Similarly, RWS values show that maximum water deficit while minimum area is getting adequate water supply. Greater yield is recorded in bed system as plant per square meter is more in bed system in comparison of flat system Thus, the integration of GIS tools to regularly compute performance indices could provide irrigation managers with the means for managing efficiently the irrigation system.

Keywords: Field survey, Relative Water Supply (RWS), Remote sensing maps, Water Use Efficiency (WUE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
1815 Accuracy of Small Field of View CBCT in Determining Endodontic Working Length

Authors: N. L. S. Ahmad, Y. L. Thong, P. Nambiar

Abstract:

An in vitro study was carried out to evaluate the feasibility of small field of view (FOV) cone beam computed tomography (CBCT) in determining endodontic working length. The objectives were to determine the accuracy of CBCT in measuring the estimated preoperative working lengths (EPWL), endodontic working lengths (EWL) and file lengths. Access cavities were prepared in 27 molars. For each root canal, the baseline electronic working length was determined using an EAL (Raypex 5). The teeth were then divided into overextended, non-modified and underextended groups and the lengths were adjusted accordingly. Imaging and measurements were made using the respective software of the RVG (Kodak RVG 6100) and CBCT units (Kodak 9000 3D). Root apices were then shaved and the apical constrictions viewed under magnification to measure the control working lengths. The paired t-test showed a statistically significant difference between CBCT EPWL and control length but the difference was too small to be clinically significant. From the Bland Altman analysis, the CBCT method had the widest range of 95% limits of agreement, reflecting its greater potential of error. In measuring file lengths, RVG had a bigger window of 95% limits of agreement compared to CBCT. Conclusions: (1) The clinically insignificant underestimation of the preoperative working length using small FOV CBCT showed that it is acceptable for use in the estimation of preoperative working length. (2) Small FOV CBCT may be used in working length determination but it is not as accurate as the currently practiced method of using the EAL. (3) It is also more accurate than RVG in measuring file lengths.

Keywords: Accuracy, CBCT, endodontic, measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1814 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal

Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha

Abstract:

Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.

Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
1813 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
1812 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform

Authors: Vijaya Prakash.A.M, K.S.Gurumurthy

Abstract:

In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].

Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
1811 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology

Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões

Abstract:

This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.

Keywords: Fruit thinning, horticultural field, portable devices, sensor technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
1810 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1809 Improvement of Stator Slot Structure based on Insulation Stresses Analysis in HV Generator

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetical and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.

Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
1808 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application

Authors: Paweł Żur, Alicja Żur, Andrzej Baier

Abstract:

Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.

Keywords: 3D printing, composite bushing, modal analysis, multi-material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56
1807 Improving Quality of Business Networks for Information Systems

Authors: Hazem M. El-Bakry, Ahmed Atwan

Abstract:

Computer networks are essential part in computerbased information systems. The performance of these networks has a great influence on the whole information system. Measuring the usability criteria and customers satisfaction on small computer network is very important. In this article, an effective approach for measuring the usability of business network in an information system is introduced. The usability process for networking provides us with a flexible and a cost-effective way to assess the usability of a network and its products. In addition, the proposed approach can be used to certify network product usability late in the development cycle. Furthermore, it can be used to help in developing usable interfaces very early in the cycle and to give a way to measure, track, and improve usability. Moreover, a new approach for fast information processing over computer networks is presented. The entire data are collected together in a long vector and then tested as a one input pattern. Proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented time delay neural networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Usability Criteria, Computer Networks, Fast Information Processing, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
1806 Interest Rate Fluctuation Effect on Commercial Bank’s Fixed Fund Deposit in Nigeria

Authors: Okolo Chimaobi Valentine

Abstract:

Commercial banks in Nigeria adopted many strategies to attract fresh deposits including the use of high deposit rate. However, pricing of banking services moved in favor of the banks at the expense of customers, resulting in their seeking other investment alternatives rather than saving their money in the bank. Both deposit and lending rates were greatly influenced by the Central Bank of Nigeria (CBN) decision on interest rate. Therefore, commercial bank effort to attract deposits via manipulation of her rates was greatly limited, otherwise the banks will be giving out more than it earned. The study aimed at examining the relationship between interest rate and fixed fund deposit of commercial banks, how policy-controlled interest rate affected commercial bank’s fixed fund deposit The researcher employed ordinary least square technique, using, multiple linear regression, unrestricted vector auto-regression, correlation matrix test, granger causality and impulse response graph in the analysis. Commercial bank’s interest rates affected commercial bank’s fixed fund deposit significantly while policy-controlled interest rate did not significantly transmit through the commercial bank’s interest rates to affect fixed fund deposit. While commercial banks seek creative ways to expand their fixed fund deposit, policy authorities in Nigeria should better coordinate interest rate fluctuation and induce competition in the entire financial sector.

Keywords: Commercial bank, fixed fund deposit, fluctuation effects, interest rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3600
1805 Macular Ganglion Cell Inner Plexiform Layer Thinning in Patients with Visual Field Defect that Respects the Vertical Meridian

Authors: Hye-Young Shin, Chan Kee Park

Abstract:

Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.

Keywords: Brain lesion, Macular ganglion cell-Inner plexiform layer, Spectral-domain optical coherence tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
1804 OSGi in Cloud Environments

Authors: Irina Astrova, Arne Koschel, Björn Siekmann, Mark Starrach, Christopher Tebbe, StefanWolf, Marc Schaaf

Abstract:

This paper deals with the combination of OSGi and cloud computing. Both technologies are mainly placed in the field of distributed computing. Therefore, it is discussed how different approaches from different institutions work. In addition, the approaches are compared to each other.

Keywords: Cloud computing, OSGi, distributed environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
1803 Measuring the Structural Similarity of Web-based Documents: A Novel Approach

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian

Abstract:

Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
1802 Hospital Waste Management Practices: A Case Study in Iran

Authors: M. Farzadkia, S. Jorfi

Abstract:

Hospital waste is a category of waste consisting of infectious and non-infectious waste, which pose environmental and health risks. Therefore, special planning and management is required, due to the potential hazards of them. The lack of valid and comprehensive information regarding the generation and management of hospital waste in Iran is one of the most important problems in this field. This research aimed to evaluate hospital waste management efficiency in Karaj city, Iran. The four greatest hospitals in Karaj city had been selected in this cross-sectional study. Site observations and interviews with employees were implemented. The data was gathered based on the hospital waste management questionnaire which was designed by World Health Organization for developing countries. Collected Data had been analyzed using SPSS software. The average of solid waste which was generated per bed was 2.78 kg, which included 90% of domestic waste and 10% of infectious waste. Based on the quantitative analysis of general and infectious waste in these hospitals, the highest contributors of general waste were consisting of food waste (37.39%), while textile (28.06%) were the highest contributors of the infectious waste. According to the information contained in the questionnaires, the main defects of waste management in these hospitals were; inadequate staff in waste management sector, poorly disinfection of solid waste containers and temporary storage locations, and a lack of proper infectious waste treatment. According to the results of this research, waste management in these hospitals were far from optimum conditions. In order to improve the existing conditions, mentioned problems must be solved quickly, and planning for continuous monitoring in the waste management field in these hospitals should be established.

Keywords: Waste management, hospital wastes, solid wastes, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
1801 The Number of Rational Points on Singular Curvesy 2 = x(x - a)2 over Finite Fields Fp

Authors: Ahmet Tekcan

Abstract:

Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of rational points on singular curves Ea : y2 = x(x - a)2 over Fp for some specific values of a.

Keywords: Singular curve, elliptic curve, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1800 Natural Gas Dehydration Process Simulation and Optimization: A Case Study of Khurmala Field in Iraqi Kurdistan Region

Authors: R. Abdulrahman, I. Sebastine

Abstract:

Natural gas is the most popular fossil fuel in the current era and future as well. Natural gas is existed in underground reservoirs so it may contain many of non-hydrocarbon components for instance, hydrogen sulfide, nitrogen and water vapor. These impurities are undesirable compounds and cause several technical problems for example, corrosion and environment pollution. Therefore, these impurities should be reduce or removed from natural gas stream. Khurmala dome is located in southwest Erbil-Kurdistan region. The Kurdistan region government has paid great attention for this dome to provide the fuel for Kurdistan region. However, the Khurmala associated natural gas is currently flaring at the field. Moreover, nowadays there is a plan to recover and trade this gas and to use it either as feedstock to power station or to sell it in global market. However, the laboratory analysis has showed that the Khurmala sour gas has huge quantities of H2S about (5.3%) and CO2 about (4.4%). Indeed, Khurmala gas sweetening process has been removed in previous study by using Aspen HYSYS. However, Khurmala sweet gas still contents some quintets of water about 23 ppm in sweet gas stream. This amount of water should be removed or reduced. Indeed, water content in natural gas cause several technical problems such as hydrates and corrosion. Therefore, this study aims to simulate the prospective Khurmala gas dehydration process by using Aspen HYSYS V. 7.3 program. Moreover, the simulation process succeeded in reducing the water content to less than 0.1ppm. In addition, the simulation work is also achieved process optimization by using several desiccant types for example, TEG and DEG and it also study the relationship between absorbents type and its circulation rate with HCs losses from glycol regenerator tower.

Keywords: Aspen Hysys, Process simulation, gas dehydration, process optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8967