
Abstract—This paper deals with the combination of OSGi and
cloud computing. Both technologies are mainly placed in the field of
distributed computing. Therefore, it is discussed how different
approaches from different institutions work. In addition, the
approaches are compared to each other.

Keywords—Cloud computing, OSGi, distributed environments.

I. INTRODUCTION

HERE are a few reasons why it sounds practical to bring
two technologies – OSGi and cloud computing – together.

On the one hand, OSGi [16] works well in distributed
environments. It is possible to have a repository that gives
access to all components (called bundles) and their offered
services. On the other hand, cloud computing is a service that
offers computing power, storage or platforms in a network
connected field. Therefore, it is obvious to get both
technologies together as a working platform.

The OSGi framework provides functionalities to build
applications consisting of different modules. Such modules
are called bundles. A bundle contains its own address space
and class loader. The several bundles communicate over the
services they import from other bundles or offer to other
bundles. This behavior is defined in a manifest file for each
bundle. A special service registry is needed to register and get
services. The communication between bundles could be
compared to the approach the service oriented architecture
provides.

As already mentioned a cloud contains many connected
computers (nodes) which are used to run distributed
applications. To develop applications in a distributed way
often outcomes in a very complex planning, implementation
and testing phase. Even more the software developer is not
able to get a complete overview of the complexity of the
whole software system in most cases. OSGi can provide
simple and well known mechanisms to handle such problems.
The OSGi framework itself is limited on using bundles on
only one node. But there are different approaches to
circumvent these limitations to enable distribution of bundles

Irina Astrova is with the Institute of Cybernetics, Tallinn University of

Technology, Estonia (e-mail: irina@cs.ioc.ee).
Arne Koschel, Björn Siekmann, Mark Starrach, Christopher Tebbe, and

Stefan Wolf are with the Faculty IV, Department for Computer Science,
University of Applied Sciences and Arts Hannover, Hannover Germany (e-
mail: arne.koschel@hs-hannover.de).

Marc Schaaf is with the Institute for Information Systems, University of
Applied Sciences Northwestern Switzerland, Olten Switzerland (e-mail:
marc.schaaf@fhnw.ch).

to arbitrary nodes, which leads to completely distributed
applications. Some of these approaches are presented in this
paper. When using OSGi the developer has no longer to take
care of the later distribution of the system, because he can
develop and test the application on one pc. The formally
mentioned approaches could then be used to distribute the
bundles on arbitrary nodes transparently.

The first approach presented in Section II is a draft by the
OSGi Alliance that was produced while a workshop with the
theme of combining both techniques. Section III presents the
Cloud Computing API and the following Section IV deals
with OSGi Remote Services, which extend OSGi with remote
exporting and importing of services. Section V describes the
concept of OSGi4C, which was developed at the universities
of Ulm and Erlangen. The last approach is called R-OSGi,
which was developed at the ETH Zurich in Switzerland is
discussed in Section VI. Finally, Section VII compares the
different approaches with each other.

II. THE OSGI ALLIANCE APPROACH

In this section an approach of the OSGi Alliance is
discussed in detail. In March 2010 the OSGi Alliance held a
workshop with the topic of discussing how OSGi and Cloud
Computing can be combined. The result of this workshop is a
draft [7]. A lot of recommendations and assumptions about the
combination of both techniques are made within this paper. In
fact the paper is only a theoretical approach to the topic. But it
handles the main sources of problems and gives the according
answers. The paper was in a real early state when this
document was written. But the main aspects are mostly clear
defined. It can also be seen, that the paper is continuously
refined, due to the version history.

A. Guidelines
Within the paper there are several guidelines that the

authors mention as good rules to bring Cloud Computing to
the OSGi world. It is mentioned that the core aspect is based
on the dependencies. This is caused by the fact that the OSGi
framework is based on the combination of single components
or rather bundles that can use the services of other bundles
that they are connected with. This enables the modular and
service oriented programming style with the OSGi framework.
One concerning fact on the dependencies is the USE/REUSE
Paradox [4]. It describes the fact that the reusing ability of
software components depends on how the components and the
resulting dependencies are modeled. If the components are too
coarse-grained they are easier to use but the factor on how
reusable they are gets smaller. This is caused by the fact that

OSGi in Cloud Environments
Irina Astrova, Arne Koschel, Björn Siekmann, Mark Starrach, Christopher Tebbe, Stefan

Wolf, and Marc Schaaf

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

575International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

the coarse-grained components are clearly more inflexible and
static. On the other hand if the components are more fine-
grained they would be more complicated to use but they are
more reusable because they fit better into more different
problems. The other point is the weight of a component. If the
component is of heavy weight it can be easier to use it,
because the most things are capsule in it. But if the component
is more lightweight it is easier to reuse, because it can be set
easier into another context. But this would cause more
configuration work. For the dependencies between the
bundles the draft includes three aspects that should be used:
sized just right, avoiding vendor lock-in and reactive runtime.

It is important to get the sizes of the bundles in the right
way. If the cloud environment would be built with the help of
virtual machines the deployment would be static and
ponderous. Bandwidth and calculating power is needed for
every deployment. If it would be possible to deploy just single
bundles on a cloud and the need for a redeploy only depends
on the changed bundles, it could spare some resources. The
effect is heavier if the infrastructure gets greater. Another
fundamental point is to avoid a vendor lock-in. As today’s
cloud computing solutions are often based on proprietary
virtual platforms. If the user stays with one company the
problem is not as big. But if he wants to port his virtually built
up systems to a platform by another vendor, it could cause
trouble. In the worst case the user has to copy all data from
one vendor, build up a complete new environment at the
second vendor and then merge the data into the new system.
Because of this massive lack of interoperability it is necessary
to get way to port between vendors in an easier way.

To get more interoperability into the cloud for OSGi
applications, the OSGi Alliance wants to build up a
repository. This can be compared to the service registry that
the OSGi framework has included. The OSGi based cloud
environment would have a central registry with all bundles
stored in it. This registry is called OBR (OSGi Bundle
Repository). Within the OBR all available bundles of one
cloud are held. Due to the fact that a bundle is self-describing
and contains all bundles that it depends on, the dependencies
can be easily dynamically solved. For the case that a user
wants to change the vendor of his cloud computing
environment, it is easier. If the user uses OSGi to build up his
software and he wants to change the vendor. He just ports the
bundles to the other vendor and all dependencies are resolved
by the OBR. This behavior can enable an easier vendor
change and moving from one platform of one vendor to one of
another vendor. For this behavior it is needed to have uniform
OBR that is available on every OSGi supporting cloud
environment. A similar approach to a bundle repository for the
cloud is the Oscar Bundle Repository [6]. But this approach is
more general and has its roots in a public distribution of
bundles over a central point in the Internet. It is not
specialized for the use in a cloud environment.

The OSGi Alliance mentions as a third point that a reactive
runtime should also be applicable. That means that if a bundle
is changed, the OBR manages the dependencies and it enables

updates and rollbacks in an easier manner as if using static
virtual machines that have to be replaced with a new version.
This would lead to a loss of agility and more workload for the
developers or users. In addition to the reactivity a virtual
machine has to be uploaded over the Internet or at least over
the network. This could cause long upload times on the one
hand. On the other hand it occupies bandwidth. If only single
bundles are uploaded and the dependencies are resolved, it
would save a lot of the network bandwidth. The design of
bundles abets the reactive runtime. With the meta data that is
stored within the manifest file the dependencies are included.
With this foundation it is easy to resolve the dependencies
with the help of the OBR.

With this behavior it would also be possible to let the
deployed system grow with the needs of the user. If e.g. a
Software developing company wants to expand and let their
provided systems grow. They just need more computation
power bought from the cloud provider. It would also be
possible to stay at a certain level of agility. Because they still
only have to redeploy the bundles for special needs of the
customer.

B. Conclusion
Overall the draft can be seen as a good collection of

guidelines on how to develop with the OSGi framework in a
cloud environment. Due to the theoretical approach it will be
supposably stay as advises on how to build up such a system.
Even this early version of the paper has good ideas, use cases
and advises to build up upon OSGi in the Cloud. This is
mostly caused by the fact that the workshop members and also
the OSGi Alliance consist of professionals from the industry
and well known institutions. If the combination of both
techniques is working on a PaaS-Platform with OSGi libraries
and an implementation of an ORB, it could lead to an agile
and vendor unspecific solution. The reaction on changing
bundles can be more reactive and the reusability can be
enhanced.

III.CLOUD COMPUTING API
A paper of the university Minho (Universidade do Minho)

[2] from Portugal describes CAPI (Cloud Computing API).
This new concept targets to an abstract API for the cloud. This
general API, the Cloud API, shall help to prevent the vendor
lock-in when creating an application for the cloud.
Additionally the benefits of OSGi shall improve the
portability of created cloud applications.

In the actual situation every vendor specializes on one or
more layers of the cloud stack (IaaS, PaaS or SaaS).
Additionally the vendors offer mostly only a few services
which are specialized on a certain sector. The most important
disadvantage is that every vendor offers his own proprietary
API for his services. That forces the developer to build their
applications upon a certain specialized proprietary API, since
there is no standardized interface to access a service in the
cloud. So every developer has to deal with a new proprietary
API before he can build applications. Changing the cloud

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

576International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

vendor is very difficult to realize, since the whole application
needs to get refactored to another proprietary API. This results
in a very poor portability of cloud applications. The Cloud
API tries to avoid all this deficits with an abstract API that
uses OSGi for dynamic loading of single bundles.

A. Architecture
The fundamental architecture of the Cloud API, as shown

in Fig. 1, is based on an OSGi environment and further
bundles to connect all layers of the cloud stack. On this OSGi
environment the other ingredients are put on. The modular
properties of OSGi help to define modules and to control the
module life-cycles. OSGi supports also the dynamic loading
and unloading of modules at the runtime. This is very
helpfully for the Cloud API.

Fig. 1 CAPI Architecture

B. Cloud API Modules
The target of the Cloud API is to abstract the cloud stack to

single modules. The new defined interfaces are very general to
be mostly universally applicable. To reach this abstraction,
everything should be seen as an entity. Additionally there are
monitoring and security capabilities integrated in these
modules.

In the Infrastructure as a Service (IaaS) layer, everything is
seen as a resource. This can be a hard disk, a CPU, storage
and so on. In this layer, three new interfaces are defined. The
Resource Pack consists of pre-build images. When a Resource
Pack is running, it is handled as a Resource Container with the
possibility to add or remove resources at runtime. The
interface called Resource Manager defines access to the
modules and offers the ability of monitoring.

The Platform as a Service (PaaS) layer module abstracts
running applications. They are defined as Managed
Applications and through this the applications get a well
defined life-cycle. The Managed Applications can get started
or stopped and also the status of the application can get
monitored.

On the Software as a Service (SaaS) layer ready
applications are offered. Here the interface Monitored
Services is introduced which adds the possibility to monitor
the application. Since this layer is very inflexible only the
monitoring can be added through the Cloud API.

The Cloud API uses standard JMX (Java Management
eXtensions) to export the CAPI interface and therefore it
offers access for a web interface.

C.Conclusion
The Cloud API describes a very useful approach of an

abstract and general API to be used for the cloud. This
abstract API could combine all proprietary APIs to support the
consumer and developer of cloud applications. The Cloud API
would also enhance the portability of developed applications.
However this paper is very short and can therefore only
considered as a rough draft. Furthermore the cloud vendors
have to unify on this standard abstract API. This leads to more
problems and delays the standardization.

IV.OSGI REMOTE SERVICES

The OSGi framework offers the possibility of
communication between bundles inside of one OSGi
framework (local). The bundles will use services for the
communication with each other. Services can get registered on
the Service Registry by the bundles itself. So every bundle can
offer services. Other bundles can use the Service Registry to
find and get the offered services. OSGi remote services extend
the local communication between two bundles to a
communication between two bundles on different OSGi
frameworks. This communication will then be done with
endpoints which provide access to services in other OSGi
frameworks.

A. Architecture
The general architecture of OSGi remote services is shown

in Fig. 2.

Fig. 2 OSGi Remote Services Architecture

A bundle can export a service and therefore registering it to
the service registry. The distribution provider will then create
one or more endpoints for this exported service, if some
important conditions are set. Other distribution providers are
able to import the exported services. This also allows other
OSGi frameworks to import remote services. Importing a
remote service is generally the same as importing a local
service. There are only a few capabilities or properties that
need to be fulfilled. Next to the importing of a remote service
a bundle has the possibility to search for services. These
remote services are then added automatically if they are
available.

Invoking a remote service is slightly different from
invoking a local service. There are fewer opportunities on

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

577International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

invoking a remote service. To compensate this weakness the
Properties for remote services are defined. These Properties
try to map the whole opportunities of invoking local services,
also to remote services. The Properties are passed to the
remote service while registering it to the Service Registry.

Security is an important topic. Since with remote services
the calls are no longer only local, the security gets a more
important status. The distribution provider needs to prevent
that bundles get more permissions through the fact that the
distribution provider is calling the imported service. The
distribution provider should therefore limit the available
permissions. Additionally the distribution provider is a
worthwhile target so it should be secured very well.

B. Conclusion
OSGi Remote Services are a good approach to enable

exporting and importing services to and from other OSGi
frameworks. This is a good deal to integrate OSGi into the
cloud. And this can also be done with nearly the same usage
of OSGi services. This enables to distribute the services
remotely and use it somehow like local services. The current
OSGi Enterprise Specification [16] currently already contains
the OSGi Remote Services. However the OSGi Remote
Services will get improved and are therefore still in
development.

V.OSGI4C: ENABLING OSGI FOR THE CLOUD

A. Introduction
This section will explain the general properties of OSGi4C.

OSGi4C was developed at the universities of Ulm and
Erlangen. The results were published in an ACM paper [15] in
2009 which is the basis of the following preparation. The
mean focus of the OSGi4C platform are described by the
following three headwords: centralized and decentralized
discovery of bundles, automatic selection of bundles with the
help of functional and non functional properties and
transparent support of discovery, selection and deployment of
bundles.

The following section will give a brief overview about the
concepts, the architecture and the central functions of
OSGi4C. The first part of this section will deal with the
technologies of OSGi4C. After that the basic architecture and
the main components of the platform will be presented. In
today’s companies fast work flows always play a big deal, so
this section also will investigate the performance of OSGi4C
in contrast to other possibilities to share functionalities over a
network. At the end of this section the benefits and
disadvantage will be discussed.

B. Technology
To decentralize all bundles in a network, OSGi4C uses a

peer to peer approach. The basic idea is to decouple the whole
architecture from the underlying peer to peer implementation.
Since this is only a prototype, the developer focuses on JXTA
[17] as peer to peer platform. JXTA is completely free and

was initially developed by Sun Microsystems in 2001. JXTA
defines a lot of platform and implementation independent
protocols which are based on XML. JXTA is available for the
most popular programming languages (like C, C++, Java and
C#). JXTA resources are organized in peers and more peers in
a peer group. Peers in a peer group are sharing a specified
context and work together for the group. Each resource (peer
and peer groups) has a network wide unique id.

For bundles in a network with shared resources it is very
important to communicate and to share such resources. For
this approach the developers’ analysis different possibilities to
implement an OSGi HTTP service. Different implementations
of the OSGi HTTP service are fundamental for environments
which consist of clients with different hardware capacities.
The paper provides three HTTP implementations which are
applicable for different platforms. For platforms with low
hardware capacities the developers use NanoHTTPD which
only consists of a single Java class. It has a very low memory
footprint but has cut backs in performance because of no multi
threading. The other approaches are the Knopflerfish
implementation with and without server side caching. Both
supporting multi threading and in both implementations this
results in higher memory footprint and the need of more CPU
power.

C.Architecture

1) Architecture Layers
As shown in Fig. 3 the complete OSGi4C architecture

consists of four different layers which are independent of each
other. At the top there is the application bundle which
describes the individual application of each client. If the
application bundle needs bundles from somewhere in the peer
to peer infrastructure it starts to communicate with the
OSGi4C layer. The layer consists of two mean components.
At first there are three OSGi4C Services, which will be
described in the following

Loading Service: This service is responsible for
automatic selection and automatic loading of needed
bundles. the loading service enables dynamic integration
of bundles which are loaded from the peer to peer
infrastructure
Repository Service: The repository service manages and
loads locally available bundles
Resolver Service: With the input of the already
mentioned services the resolver services automatically
resolve bundles and service dependencies. It
communicates directly with the services provided by the
JXTA platform to load bundles from the network. The
JXTA services will be describes later in this section.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

578International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

Fig. 3 OSGi4C Architecture

The next layer in the architecture is the JXTA layer it
provides all necessary functionalities to share resources and
thus bundles over the peer to peer infrastructure. JXTA
consists of two different services which take care of the
dissemination and retrieval of resources in the peer to peer
network. The code sharing service enables loading and
sharing of bundles while the code discovery service provides
discovery of bundles and publishing the meta data of a JXTA
resource. The bottom layer is standard OSGi. It is not
necessary to change anything on the respective OSGi
implementation.

2) Meta Data
As mentioned in the previous section some meta data is

needed to give informations about resources and bundles in
the peer to peer infrastructure. As shown in Fig. 4, a bundle
has to be enhanced by some properties. The Interface gives a
detailed description about the functionality a bundle provides.
Functional properties gives an overview about additional
functionalities the bundle provides. An example for this may
be the HTTP services each bundle implements.

Fig. 4 OSGi Bundle Description

Non functional properties meanly define quality of service
attributes like security or performance. Compatibilities are
necessary for additional system properties a bundle needs like
the JDK version or something like that. Dependencies may be
the most important part of a bundles meta data. The
dependencies part gives a detailed overview about all
additional bundles and services a bundle needs to provide
complete functionality. If more bundles in the cloud provide a
needed functionality an internal rating systems rates all found
bundles. For the internal rating non functional properties will
be used to calculate an average rating sum.

To publish OSGi bundles as a JXTA resource in a peer
group some advertisements are needed. The interface
description advertisement (IDA) publicizes the existence of an
interface in the network. The IDA can be searched by using
the full interface name of the searched bundle. The next one is
the resource advertisement (RA); it gives a detailed
description about the functionality of an interface. The last
one is the code description advertisement (CDA) it describes
how an interface is implemented for a specific platform.
Platform depended implementations are useful.

Fig. 5 JXTA advertisements

Since a cloud infrastructure is often used by very different
terminals, a solution is needed for a powerful desktop pc as
same as for a limited mobile device. Code description
advertisements also provide some more meta data to publicize
how an interface can be loaded. All just introduced
advertisements can refer to each other by using a unique id.
Fig. 5 illustrates how advertisements refer to each other. It
also shows that the IDA can be seen as the mean
advertisement which can refer all other advertisements. It
publicizes the existence of an interface and points to the
provided functionality (RA) and also links to the real
implementation (CDA). The CDA also links to one or more
RA’s which contains meta data and implementation details to
load a resource.

D.Performance
As mentioned in the introduction to this chapter

performance plays a big deal in modern companies. The
developer of OSGi4C also realizes that it has to be evaluated
if the new solution can obtain performance results as currently
available technologies. The paper focus on comparisons
between OSGi4C and OBR respectively SOAP based Web
Services. Table I shows an excerpt of the results provided in
the paper.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

579International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

TABLE I
COMPARISON OF OSGI4C VS. OBR TO LOAD A BUNDLE (IN SECONDS)

Bundle Size LAN Internet

0.1 MB OSGi4C (1.55)

OBR (0.42)

OSGi4C (1.55)

OBR (0.49)

1.0 MB OSGi4C (1.90)

OBR (0.56)

OSGi4C (4.80)

OBR (3.01)

10 MB OSGi4C (6.81)

OBR (3.31)

OBR (22.74)

OSGi4C (33.80)

As seen the result of the comparison is that an centralized
OBR approach is must faster in allocating a bundle. Especially
a bundle with a size of 10 MB visualizes the extreme
differences. While OSGi4C is much slower than an OBR
approach in is nearly as fast as a Web Service solution. It
really depends on how often a service is invoked.
Nevertheless OSGi4C offers some benefits beside
performance which will be discussed in the following section.

E. Conclusion
The previous sections gave a brief overview about the

architecture and functionality of OSGi4C. In conclusion it can
be said that OSGi4C has some very good approaches. The
decentralized peer to peer architecture makes sense in matter
of independent bundles. Each bundle has its own peer in the
infrastructure. For an developer OSGi4C might be easy to use
because OSGi remains intact. As a matter of this the developer
does not need to rethink his/her development steps when
he/she is already familiar with OSGi. The implementation also
provides integration in the consoles of Eclipse Equinox and
Apache Felix. A problem might be the performance but in fact
of a decentralized approach and the lost of a single point of
failure this may be neglected for the first time. Some more
problematic may be the focus on pure meta data. Meta data
often leads to failures because often the developer has to set
them on his/her own. The rating system shortly mentioned in
the section above also leads to more problems because a good
and useful rating is very complex. Ratings may differ from
developer to developer and not functional properties which
are important for OSGi4C might be less important for the
developer. Its also problematic that meta data are the basis of
the rating system which are not really checked. The
disadvantages of meta data also results in another problem
named security. Meta data can be faked, a hacker or
something like that can use meta data of another bundle to
spread the new malicious bundle in the cloud. The peer to peer
cloud of OSGi4C also works unchecked as a matter of this
everyone can add new peers to the cloud, even when they are
malicious. A solution for both problems might be a signature
based approach which is also offered in the paper. All bundles
have to be signed and if not the client reject the bundle.
Another security problem is that all JXTA resources
communicate via plain XML messages. As a result of this a
hacker is able to read all messages send via the network. He is

also able to change message or work as a man in the middle. It
follows that XML security is highly required for a further
commercial use.

Also fault tolerance is not described by the paper. It is quite
obviously that this could be managed by multiple peers
providing one bundle. Also how load distribution works is not
considered.

VI.R-OSGI
With R-OSGi [14] it acts as likewise with OSGi4C around

an almost finished implementation, for the distributed use of
OSGi Bundles, which is likewise based on its own concept.
The concept of distributing Bundles on multiple nodes differs
strongly in the two approaches. The communication between
nodes differs too, although both use some kind of peer to peer
communication. For this reason R-OSGi will be presented in
this section as an additional possibility, to distribute OSGi
applications. R-OSGi could be used to distribute an
application in the cloud over an arbitrary number of nodes
(instances), to keep the application available for the user,
without fearing a loss of performance.

R-OSGi offers the advantage of developing and testing
applications on a single computer and distributing single
bundles of the application at deploy time to arbitrary nodes
(with OSGi-Framework and R-OSGi). For this reason the
developer is discharged, because he has no longer to deal with
the distribution of the application in the cloud. R-OSGi
supports the distribution of existent OSGi-Applications, with
no need to change the application itself, how this works is
described later on.

R-OSGi can be seen as a kind of middleware layer, which
is attached on OSGi. Hence all benefits of OSGi are available
when using R-OSGi, too. Additionally it is possible to offer
all valid OSGi services as remote services. Between nodes
there is no hierarchy (no Client/Server), but a symmetric
relation, which can be regarded as a kind of peer to peer
connection. To keep the transparency for the local OSGi
frameworks R-OSGi makes sure that remote calls look like a
local call of a service. An advantage of R-OSGi is, that no
stubs or skeletons have to be created, to enable this. Proxy
bundles are used to ensure the transparency instead. If a node
respectively a bundle on a node retrieves a remote service, a
proxy bundle is installed on that node by R-OSGi, which the
local OSGi framework uses to call the service. For the local
framework the proxy bundle is the original service provider,
so it does not know that it calls a remote service. With this
technique bundles could be distributed to arbitrary nodes in
the cloud.

These Properties of R-OSGi have been presented in [10]
and partly in [11], where six requirements were presented,
which R-OSGi has to fulfill (something similar was presented
in [8]). Some of them have already been mentioned:

Seamless embedding in OSGi: It is necessary that
remote and local services are indistinguishable for the
local OSGi framework to provide a transparent

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

580International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

distribution of bundles. Additionally R-OSGi must be
able to distribute existent OSGi applications, without
changing the application itself.
Reliability: Through the distribution of bundles no new
failures are added to the OSGi framework. New
appearing failures, such as network problems, are mapped
to existence failures of the framework. Generality: The R-
OSGi middleware does not limit the number of possible
services. Every valid OSGi service has to be potentially
distributable.
Portability: R-OSGi has to be very portable, because its
origin lies in embedded systems. Hence it is compatible
since Java 1.2 and Java ME CDC.
Adaptivity: There are no roles between nodes (no
Client/Server), the relationship between two nodes is a
symmetric one.
Efficiency: R-OSGi has to be efficient in communication
between nodes. Therefore a own binary protocol was
implemented, which is slightly faster than the highly
optimized Java RMI and two times faster than UPnP.

In R-OSGi there are two different possibilities to distribute
an OSGi application respectively offering services to other
remote bundles. The first possibility is the transparent way,
which should be used when distributing existent applications.
Otherwise the applications code has to be changed. To
transparently offer remote services to other bundles a so called
distributed service registry is used by R-OSGi. When a
service, which should be accessible by remote nodes, is
registered in an OSGi framework the distributed service
registry is informed too. Now other bundles can request for
those services over R-OSGi, which routes the request
transparently for the framework to the distributed service
registry. How that works in detail is presented in the previous
subsection. Making the application aware of its distribution is
the second possibility. Therefore a bundle which offers a
remote service has to add a property, saying that this is a
remote service, to the registration of the bundle with the local
service registry. If such a property is set R-OSGi realizes it
and perceives this service as a remote service. If now a remote
consuming bundle wants to use the service, R-OSGi sends the
service-reference to the consumer. To get a (known) remote
service a consuming bundle has a lot more to do, than a
service offering bundle. The primary condition is that the
consumer knows which service is offered by which node (IP
address and port). To build up a connection to another node
and to get a list of all available services of that node the
method connect() from R-OSGi can be used. It returns a list of
the remote services of this node. The consumer can then
search the list for the needed service and get the
corresponding reference. Using this reference the consumer
can call the remote service.

The second possibility should be used if a service discovery
described in possibility one is not possible or available. But
there is one problem; the location of the needed service has to
be known before runtime [8].

A. Techniques
To keep the remote services completely transparent to the

OSGi framework on a computer, different techniques are
used. In this section these techniques are presented. These
techniques are: proxy bundles, distributed service registry,
type injection and failure transparent distribution [10].

Before going into details the type of communication
channels used is shown. R-OSGi connects nodes with network
channels which are persistent TCP connections. To make them
persistent TCP keep alives are used. This minimizes the
needed traffic to make a remote call; otherwise for every call a
new TCP handshake is required. The used protocol is a self
implemented binary protocol, which is quite fast as already
mentioned. During the establishment of the connection leases
are exchanged by the nodes. The leases contain the name of
all offered remote services and a list of events a node is
interested in. If a remote service changes new leases are
exchanged.

1. Proxy Bundles
To make the OSGi framework believe that only local

services exist proxy bundles are used, which have been
mentioned earlier. For the OSGi framework the proxy bundles
behave exactly like normal bundles, but in reality they just
forward the service call to a remote node which offers the
service. When a remote service is requested a proxy bundle is
created dynamically on the requester framework by R-OSGi.
First the service interface and the service properties of the
remote service are send to the requesting bundle on the local
node. Then R-OSGi uses the ASM library [1] to create the
proxy bundle from the received service interface and
properties and the local BundleContext of the OSGi-
Framework through bytecode manipulation. The
BundleContext is needed to register the remote services as
local services to the service registry of the OSGi framework.
Internally all service calls are mapped to the method
invokeMethod(final String serviceURL, final String
methodSignature, final Object[] args), which takes the
address of the remote node, the method signature of the
remote service to call and the parameters of the service as
parameters. The address of the remote node is hard coded into
the proxy, because for every remote bundle a new proxy is
generated. The method signature of the remote service is used
to identify the service on the remote side. Because the proxy
bundle is registered under the same name like the remote
bundle (which is offering the remote service) and the remote
services are registered as local services the OSGi framework
can not differentiate between a local and a remote service.
Another advantage of this technique is that services can
communicate spontaneously with each other and the amount
of data, which has to be stored on the offering node and send
through the network, is reduced to a minimum, due to the fact
that the proxy code is generated dynamically at runtime. Fig. 6
shows an example of a proxy bundle which offers the remote
service of the left node to the OSGi framework of the right
node.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

581International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

Fig. 6 Example for usage of R-OSGi [10]

2. Distributed Service Registry
To offer remote services transparently without changing the

OSGi framework the distributed service registry is used by R-
OSGi to inform other nodes about remote services. The
distributed service registry uses the so called Whiteboard
pattern [5], like the normal OSGi service registry. An
interested node can register its interest on specific services
directly at the distributed service registry. If an event
concerning one of the services is available the node is
informed.

To find a registering service transparently R-OSGi can
install an additional bundle, which is called surrogate. This
bundle listens for events concerning services in a local service
registry of a node. If a service is registered which should be a
remote service (specified in the surrogate bundle) the
surrogate bundle informs the distributed service registry about
the service, which then can inform the listeners. On the
listener side R-OSGi is informed about the services. When a
bundle requests a service R-OSGi generates the proxy bundle
and the remote service can be used. If R-OSGi is informed
about the disappearance of the service (due to a failure or
unregistration of the service), it sends a bundle unload event
to the local service registry. The service registry then informs
the consuming bundle about the problem and the proxy bundle
is removed by R-OSGi. With this technique the OSGi
application must not be changed, because everything is
managed by R-OSGi.

3. Transparent Distribution
The name of this technique is a little bit confusing (chosen

by [10]). In the end it just means wrapping failures, which are
unknown to the OSGi framework, to failures that are known
to it. This is needed to make the remote calls transparent to the
framework. Without doing this the framework has to be
extended and aware of distribution. That means more exactly
above all the network connections between nodes and failures
in R-OSGi respectively on the remote side. If a failure occurs
in one of the previous mentioned areas it is forwarded to the
calling OSGi framework. If this concerns an unknown failure
it is wrapped to a known failure by R-OSGi before forwarding
it to the OSGi framework. A remote failure during a remote
service call, which occurred in the network communication, is
wrapped by R-OSGi into an unload event of the remote

bundle which offers the called service. So the local OSGi
framework is only informed, that the proxy bundle does no
longer offer the service.

4. Type Injection
The solution for one big problem is still missing. Because

of the distribution of applications it is possible, that a bundle
on one node which offers a remote service has access to
classes respectively data types that are missing on another
bundle which wants to use the service. To solve this problem
type injection is used. It can be seen as a kind of distributed
data type system.

If the remote service expects parameters or returns a result
of type(s) which are unknown to the caller, the type injection
is used by R-OSGi during the generation of the proxy bundle.
When the service interface and properties are sent to the
requester of a remote service additionally a list of all types
which are not available on the requester side. This”injection
list” is created during the registration of the remote service
using a static code analysis. The analysis checks only data
types that are contained in the bundle, which offers the
service. Data types of other bundles are ignored like all
classes from java.* and org.osgi.*, which are supposed to be
on every node. All found data types are saved in the”injection
list”. If now another node requests the remote service the list
is sent to it with the service interface and properties needed
for the proxy generation on the requesting node. During the
generation of the proxy all needed data types are set as exports
of the proxy bundle to make them available to the bundles of
the requesting node. The ignored data types from other
bundles are added to the imports of the proxy bundle. This
technique makes the proxy bundles self contained and offers
type consistency for an OSGi framework requesting remote
services.

B. Remote Service Call
To give a deeper view into calling remote services with R-

OSGi the flow of an remote service call is described in this
subsection. As you can see in Fig. 7, which visualizes the flow
of a remote call, the starting call comes from a bundle inside
the local node. Because the local OSGi framework is not
aware of the distribution the proxy bundle, on which the
service is called, seems to be a normal local bundle. But in
reality the proxy bundle just forwards the call to the remote
node which contains the bundle offering the called remote
service. Therefore it uses the invokeMethod() method which
was already explained in the previous subsection. After the
remote node received the service call through the network
channel between the two nodes, it looks up in a HashTable
which method has to be called using the received method
signature and then extracts the needed parameters for the
service out of the received packet. Afterwards it calls the
service with the extracted parameters using reflection [10].
The result of the service call is packed into a packet and then
sends back to the proxy bundle on the local framework. In the
last step the proxy bundle sends the result to the initial service

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

582International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

caller.

Fig. 7 Example for a remote service call
(based on description of [10])

If a failure occurs on the remote node a failure message is
packet into the packet instead of the result. If a failure outside
the OSGi framework occurred it is wrapped into an OSGi
failure like described in the previous subsection. For this
reason the remote service behaves like a local service in the
view of the calling bundle.

C. Conclusion
The concept of R-OSGi is well elaborated and covers

different use cases. Its usage is slightly similar to the remote
services of OSGi (although it’s older) but different approaches
for the implementation have been used.

As already mentioned creating applications for the cloud is
quite easy, due to the fact, that the developer has not to deal
with the distribution. The coupling between R-OSGi and the
OSGi framework is quite easy to accomplish and the usage of
R-OSGi is quite easy, too. The usability is simplified by R-
OSGi itself, because it pays attention to the details without
interaction, like the transparency of remote services for the
OSGi framework. But some people reported problems using
remote services, so it seems, that there are still some bugs to
fix.

The performance of R-OSGi, as already mentioned, is quite
well. The network communication is slightly faster than the
highly optimized Java RMI and two times faster than UPnP
[10]. During the benchmark the binding time of a remote
service and service invocation have been measured. Another
advantage is the small footprint of R-OSGi which is just about
120kB, so it is really lightweight. ROSGi offers a high
downward compatibility; it is usable since Java 1.2 or Java
ME CDC.

R-OSGi is in a beta phase since January 2009, which can
mean that the development of R-OSGi has been discontinued.
Another problem is, that there are nearly no examples, how to
other facilities available which describe or how to use R-OSGi
in detail. At least there is an API online [12] and some
websites like [3] offer a really short introduction to use remote
services with the OSGi framework being aware of its

distribution, like described at the beginning of this section.
Additionally some very important features for using R-OSGi
in the cloud are missing. R-OSGi itself offers neither load
balancing nor transparent failover [10], what limits the
application spectrum in the cloud dramatically. However the
developer of R-OSGi advertised and presented a tool as an
Eclipse plugin in [9], which is called R-OSGi Deployment
Tool. This tool monitors a distributed application in Eclipse. It
shows all nodes with their installed bundles and enables the
developer to move bundles from one node to another, during
the runtime of the application. In order to make this possible
the tool installs an “agent bundle” on every node to get the
information needed to monitor it. Additionally it adds
transparent failover and load balancing to distributed
applications using R-OSGi. This would be useful for using R-
OSGi in the cloud, but there is a big problem. The tool is not
available. It might be that the tool was never finished and
therefore never published, but this is unknown. May be it will
be published in the future. If this happens R-OSGi can be
fully used in a cloud environment at last.

Altogether R-OSGi could be a usable approach for
distributed applications in a cloud environment, if fault
tolerance and load balancing are added. Because R-OSGi is no
standard it is likely to be a niche product in the future. Only
with leaving the beta phase and adding support to R-OSGi,
which is missing so far, it could leave its niche and become a
serious competition to other approaches.

VII. COMPARISON AND FINAL CONCLUSION

The previous sections gave a detailed overview of the
different approaches to enable OSGi for the cloud. Now this
approach is compared to each other as far as possible using
the following aspects: Similarities, usability, performance,
security, current state.

Similarities: The different approaches are hard to
compare because they all base on different concepts and
have very different stages of development (some are
drafts and others are already implementations). There is
an obvious similarity between OSGi4C and R-OSGi.
Both act as a kind of middleware between the OSGi
framework and the distributed bundles. OSGi4C, R-OSGi
and OSGi Remote Services, all use a peer to peer or a
peer to peer-like approach to import or export services.
Additionally all concepts try to distribute the bundles
transparently to the OSGi framework except OSGi
Remote Services which are integrated into the OSGi
framework.
Usability: The guidelines that the OSGi Alliance is
working on can be best practices for future
implementations of both technologies. Since the Cloud
API is only a conceptual paper, the usability cannot be
compared in this content. OSGi Remote Services is easy
to use since it is directly implemented into OSGi. This
leads to only a few modifications to export or import a
service remotely. OSGi4C and R-OSGi both don’t change

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

583International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

the OSGi Framework itself, so they have to be added
additionally to the environment of a node. One
disadvantage for the usability of OSGi4C is the meta data.
Meta data are susceptible for errors in case of wrong or
not complete entries. As a result of this some
dependencies can not be resolved which results in errors
and not working bundles. R-OSGi instead is quite easy to
use (similar to OSGi remote services). On the one hand it
is possible to make normal OSGi applications distributed
without changing the code. On the other hand an
application can be developed knowing about its
distribution, to make direct remote service usage possible.
Performance: It is very difficult to make an assumptions
about the performance of the conceptual papers because
there is no implementation available yet. The OSGi
Specifications gives no information about the
performance of the OSGi Remote Services and
additionally there are no performance tests known that
have been performed. OSGi4C provides some
performance tests comparing Web Services and OBR.
The performance tests figured out that the peer to peer
approach is very slow in comparison with the other
techniques. OSGi4C is about two to three times slower
than the OBR implementation and as nearly as fast as
Web Services (which are also not very fast). But OSGi4C
provides the advantages that there is no single point of
failure like in the OBR. R-OSGi in comparison to
OSGi4C is much faster, in a performance test it was
compared with the high optimized Java RMI and UPnP.
The results of the test pointed out that R-OSGi is slightly
faster than RMI and two times faster than UPnP. One
reason for the high performance is another field of
application for R-OSGi which is embedded systems. Also
the own binary protocol improves the performance of R-
OSGi.
Security: Except of OSGi4C all other approaches do not
really deal with security. The developers of OSGi4C
notice, that security is a big problem in a peer to peer
infrastructure. It is possible for everyone to add a new
node into the environment. OSGi4C provides no
additional concepts to avoid this problem. A possible
solution may be a signature based approach. Each client
which uses OSGi applications can import a ”trusted
developers” list, each bundle must add a signature, if the
signature is in the list the bundle is valid, if the bundle has
no valid signature it will not be loaded. Over all the
developers do not care a lot about security. Because
Cloud Computing is a very new technology where new
security problem may occur it is necessary to handle such
problems.
Current state: The draft of the OSGi Alliance and the
Cloud API are conceptual papers. The OSGi Alliance
draft is continuously in development and will supposably
end up as good guidelines for the future development for
OSGi in the Cloud. The Progress of Cloud API is
questionable since the last release is from 2009. OSGi

Remote Services are usable when using synchronous
calls. They are still in current development.
Asynchronous calls are not working yet. The
development of OSGi4C is in an advanced stage. All
basic functionalities are completely implemented and the
advertisements and meta data is well defined and gives a
good solution for automatic resolving of dependencies
with some known problems. There are still some
disadvantages which are described in the previous section
and which have to be resolved before a commercial use is
possible. It is not known if OSGi4C will leave the
development status because the last results are published
in 2009. R-OSGi is the furthest implemented approach, it
is already in a beta phase. All mentioned features and
techniques in the section about R-OSGi have been
implemented already. But there are still some bugs to fix,
some people reported problems, which sometimes occur
using remote services. To help the developers an online
API of all classes of R-OSGi [12] is available. Like the
other approaches by the other institutions the last update
was in January 2009, which means leaving the beta status
is questionable.

As is recognizable from the comparison there are serious
differences between the different approaches. For that reason
a comparison is hard to do. But everything common is that the
approaches are all very sophisticated and contain different
concepts to make OSGi available in the cloud. At the moment
no approach is free of problems.

The draft of the OSGi Alliance contains guidelines which
should be followed, but only the time can show if this
guidelines, which are still under development, get used in the
future. The cloud API (CAPI) has another problem. It is
addicted to the companies if they are supporting this approach
or not. For this reason it may be doubted, that CAPI will
succeed. OSGi remote services in contrast are likely to be
used in future, because they are part of the OSGi framework
itself. The problem is that the remote services are
implemented just partly at the moment; the asynchronous part
is missing [13]. The problem of OSGi4C is that there are some
problems in the architecture. Especially the complete rely on
meta data may be a problem for a commercial use. R-OSGi
offers as previously mentioned no load balancing and no fault
tolerance, for which reason the exertion in the cloud is
questionable. Only if R-OSGi is extended with these features
it could be used in the cloud seriously.

ACKNOWLEDGMENT

Irina Astrova’s work was supported by the Estonian Centre
of Excellence in Computer Science (EXCS) funded mainly by
the European Regional Development Fund (ERDF). Irina
Astrova’s work was also supported by the Estonian Ministry
of Education and Research target-financed research theme no.
0140007s12.

We would like to thank Sören Appel from the University of
Applied Sciences and Arts Hannover, Germany, for his help

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

584International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

in preparing this paper.

REFERENCES

[1] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A code manipulation
tool to implement adaptable systems. In In Adaptable and extensible
component systems, 2002.

[2] B. Costa, M. Matos, and A. Sousa. Capi: Cloud computing api.
inforum.org.pt/INForum2009/docs/short/paper 63.pdf.

[3] S. Diener. Tutorial: How to create a remote osgi service.
http://stefan222devel.blogspot.com/2008/11/how-tocreate- remote-osgi-
service.html, Nov. 2008. (last visit February 2011).

[4] K. Knoernschild. Patterns of modular architecture get ready today for the
platform of tomorrow! http://www.kirkk.com/modularity/chapters/.

[5] P. Kriens and B. Hargrave. Listeners considered harmful: The
whiteboard pattern.
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf, Aug. 2004.

[6] OSGi Alliance. Rfc-0112 bundle repository.
http://www.osgi.org/download/rfc- 0112 BundleRepository.pdf.

[7] OSGi Alliance. RFP 133 Cloud Computing, March 2010. Revision 0.6.
[8] J. S. Rellermeyer. Services everywhere: Osgi in distributed

environments.
 http://www.eclipsecon.- org/2007/index.php?page=sub/&id=3661, Mar.
2007.

[9] J. S. Rellermeyer, G. Alonso, and T. Roscoe. Building, deploying, and
monitoring distributed applications with eclipse and r-osgi. In
Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, eclipse ’07, pages 50–54, New York, NY, USA, 2007. ACM.

[10] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-osgi: distributed
applications through software modularization. In Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware,
Middleware ’07, pages 1–20, New York, NY, USA, 2007. Springer-
Verlag New York, Inc.

[11] J. S. Rellermeyer, M. Duller, and G. Alonso. Engineering the cloud from
software modules. In Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing, CLOUD ’09,
pages 32–37, Washington, DC, USA, 2009. IEEE Computer Society.

[12] J. S. Rellermeyer et al. R-osgi remote service 1.0.0.rc4 api. http://r-
osgi.sourceforge.net/remote/apidocs/index.html, Jan. 2009. (last visit
February 2011).

[13] M. Schaaf. Extending osgi by means of asynchronous messaging.
Master’s thesis, Fachhochschule Hannover, Sept. 2009.

[14] R-osgi. http://r-osgi.sourceforge.net.
[15] H. Schmidt, J.-P. Elsholz, V. Nikolov, F. J. Hauck, and R. Kapitza.

Osgi4C enabling osgi for the cloud. New York, NY, USA, 2009. ACM.
[16] The OSGi Alliance. Osgi service platform enterprise specification.

http://www.osgi.org/Download/Release4V42, Mar. 2010. Release 4,
Version 4.2.

[17] jxta. http://de.wikipedia.org/wiki/JXTA.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:5, 2013

585International Scholarly and Scientific Research & Innovation 7(5) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

5,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

36
2.

pd
f

