Search results for: training algorithm.
2883 A New Version of Unscented Kalman Filter
Authors: S. A. Banani, M. A. Masnadi-Shirazi
Abstract:
This paper presents a new algorithm which yields a nonlinear state estimator called iterated unscented Kalman filter. This state estimator makes use of both statistical and analytical linearization techniques in different parts of the filtering process. It outperforms the other three nonlinear state estimators: unscented Kalman filter (UKF), extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF) when there is severe nonlinearity in system equation and less nonlinearity in measurement equation. The algorithm performance has been verified by illustrating some simulation results.
Keywords: Extended Kalman Filter, Iterated EKF, Nonlinearstate estimator, Unscented Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28872882 A Real-Time Specific Weed Recognition System Using Statistical Methods
Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan
Abstract:
The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22642881 The Application of Homotopy Method In Solving Electrical Circuit Design Problem
Authors: Talib Hashim Hasan
Abstract:
This paper describes simple implementation of homotopy (also called continuation) algorithm for determining the proper resistance of the resistor to dissipate energy at a specified rate of an electric circuit. Homotopy algorithm can be considered as a developing of the classical methods in numerical computing such as Newton-Raphson and fixed point methods. In homoptopy methods, an embedding parameter is used to control the convergence. The method purposed in this work utilizes a special homotopy called Newton homotopy. Numerical example solved in MATLAB is given to show the effectiveness of the purposed methodKeywords: electrical circuit homotopy, methods, MATLAB, Newton homotopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30302880 A Computational Design Algorithm for Manufacturing of Reinforced Structures with Wire Winding
Authors: Amer Ezoji, Mohammad Sedighi
Abstract:
In the article, the wire winding process for the reinforcement of a pressure vessel frame has been studied. Firstly, the importance of the wire winding method has been explained and literature was reviewed. The main step in the design process is the methodology axial force control. The frame consists of two columns and two semi-cylinders with circumstantial wires. A computational algorithm has been presented based on the governing equations and relations on stress-strain behavior of the whole system of the frame. Then a case study was studied to calculate the frame dimensions and wire winding procedure.
Keywords: Wire winding, Frame, stress, Design for Manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822879 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem
Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih
Abstract:
Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.
Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32312878 Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes
Authors: Ibrahim Gomaa, Hoda M. O. Mokhtar
Abstract:
Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.
Keywords: Continuous query processing, dynamic database, moving object, skyline queries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12442877 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks
Authors: Amin Sedighfar, M. R. Moniri
Abstract:
Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate.
Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14032876 Unrelated Parallel Machines Scheduling Problem Using an Ant Colony Optimization Approach
Authors: Y. K. Lin, H. T. Hsieh, F. Y. Hsieh
Abstract:
Total weighted tardiness is a measure of customer satisfaction. Minimizing it represents satisfying the general requirement of on-time delivery. In this research, we consider an ant colony optimization (ACO) algorithm to solve the problem of scheduling unrelated parallel machines to minimize total weighted tardiness. The problem is NP-hard in the strong sense. Computational results show that the proposed ACO algorithm is giving promising results compared to other existing algorithms.Keywords: ant colony optimization, total weighted tardiness, unrelated parallel machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18902875 Fast Return Path Planning for Agricultural Autonomous Terrestrial Robot in a Known Field
Authors: Carlo Cernicchiaro, Pedro D. Gaspar, Martim L. Aguiar
Abstract:
The agricultural sector is becoming more critical than ever in view of the expected overpopulation of the Earth. The introduction of robotic solutions in this field is an increasingly researched topic to make the most of the Earth's resources, thus going to avoid the problems of wear and tear of the human body due to the harsh agricultural work, and open the possibility of a constant careful processing 24 hours a day. This project is realized for a terrestrial autonomous robot aimed to navigate in an orchard collecting fallen peaches below the trees. When it receives the signal indicating the low battery, it has to return to the docking station where it will replace its battery and then return to the last work point and resume its routine. Considering a preset path in orchards with tree rows with variable length by which the robot goes iteratively using the algorithm D*. In case of low battery, the D* algorithm is still used to determine the fastest return path to the docking station as well as to come back from the docking station to the last work point. MATLAB simulations were performed to analyze the flexibility and adaptability of the developed algorithm. The simulation results show an enormous potential for adaptability, particularly in view of the irregularity of orchard field, since it is not flat and undergoes modifications over time from fallen branch as well as from other obstacles and constraints. The D* algorithm determines the best route in spite of the irregularity of the terrain. Moreover, in this work, it will be shown a possible solution to improve the initial points tracking and reduce time between movements.
Keywords: Path planning, fastest return path, agricultural terrestrial robot, autonomous, docking station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8612874 Fixed Point of Lipschitz Quasi Nonexpansive Mappings
Authors: M. Moosavi, H. Khatibzadeh
Abstract:
In this article, we study demiclosed and strongly quasi-nonexpansive of a sequence generated by the proximal point algorithm for a finite family of quasi-nonexpansive mappings in Hadamard spaces. Δ-convergence of iterations for the sequence of strongly quasi-nonexpansive mappings as well as the strong convergence of the Halpern type regularization of them to a common fixed point of sequence are also established. Our results generalize and improve several previously known results of the existing literature.
Keywords: Fixed point, Hadamard space, proximal point algorithm, quasi-nonexpansive sequence of mappings, resolvent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922873 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained.
Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6192872 Ec-A: A Task Allocation Algorithm for Energy Minimization in Multiprocessor Systems
Authors: Anju S. Pillai, T.B. Isha
Abstract:
With the necessity of increased processing capacity with less energy consumption; power aware multiprocessor system has gained more attention in the recent future. One of the additional challenges that is to be solved in a multi-processor system when compared to uni-processor system is job allocation. This paper presents a novel task dependent job allocation algorithm: Energy centric- Allocation (Ec-A) and Rate Monotonic (RM) scheduling to minimize energy consumption in a multiprocessor system. A simulation analysis is carried out to verify the performance increase with reduction in energy consumption and required number of processors in the system.
Keywords: Energy consumption, Job allocation, Multiprocessor systems, Task dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21872871 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38012870 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth
Authors: Hatem Hajri, Mohamed-Cherif Rahal
Abstract:
Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.Keywords: Ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9612869 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: Noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9912868 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers
Authors: M. Mohebbi, K. Shakeri
Abstract:
In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14552867 Efficient Secured Lossless Coding of Medical Images– Using Modified Runlength Coding for Character Representation
Authors: S. Annadurai, P. Geetha
Abstract:
Lossless compression schemes with secure transmission play a key role in telemedicine applications that helps in accurate diagnosis and research. Traditional cryptographic algorithms for data security are not fast enough to process vast amount of data. Hence a novel Secured lossless compression approach proposed in this paper is based on reversible integer wavelet transform, EZW algorithm, new modified runlength coding for character representation and selective bit scrambling. The use of the lifting scheme allows generating truly lossless integer-to-integer wavelet transforms. Images are compressed/decompressed by well-known EZW algorithm. The proposed modified runlength coding greatly improves the compression performance and also increases the security level. This work employs scrambling method which is fast, simple to implement and it provides security. Lossless compression ratios and distortion performance of this proposed method are found to be better than other lossless techniques.Keywords: EZW algorithm, lifting scheme, losslesscompression, reversible integer wavelet transform, securetransmission, selective bit scrambling, modified runlength coding .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13672866 Undecimated Wavelet Transform Based Contrast Enhancement
Authors: Numan Unaldi, Samil Temel, Süleyman Demirci
Abstract:
A novel undecimated wavelet transform based contrast enhancement algorithmis proposed to for both gray scale andcolor images. Contrast enhancement is realized by tuning the magnitude of approximation coefficients at each level with respect to the approximation coefficients of one higher level during the inverse transform phase in a center/surround enhancement sense.The performance of the proposed algorithm is evaluated using a statistical visual contrast measure (VCM). Experimental results on the proposed algorithm show improvement in terms of the VCM.
Keywords: Image enhancement, local contrast enhancement, visual contrast measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27462865 Simultaneous Tuning of Static Var Compensator and Power System Stabilizer Employing Real- Coded Genetic Algorithm
Authors: S. Panda, N. P. Patidar, R. Singh
Abstract:
Power system stability enhancement by simultaneous tuning of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC)-based controller is thoroughly investigated in this paper. The coordination among the proposed damping stabilizers and the SVC internal voltage regulators has also been taken into consideration. The design problem is formulated as an optimization problem with a time-domain simulation-based objective function and Real-Coded Genetic Algorithm (RCGA) is employed to search for optimal controller parameters. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance and unbalanced fault conditions.
Keywords: Real-Coded Genetic Algorithm (RCGA), Static Var Compensator (SVC), Power System Stabilizer (PSS), Low Frequency Oscillations, Power System Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22552864 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.
Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12572863 Finger Vein Recognition using PCA-based Methods
Authors: Sepehr Damavandinejadmonfared, Ali Khalili Mobarakeh, Mohsen Pashna, , Jiangping Gou Sayedmehran Mirsafaie Rizi, Saba Nazari, Shadi Mahmoodi Khaniabadi, Mohamad Ali Bagheri
Abstract:
In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition.Keywords: Biometrics, finger vein recognition, PrincipalComponent Analysis (PCA), Kernel Principal Component Analysis(KPCA), Kernel Entropy Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26802862 Application of Genetic Algorithm for FACTS-based Controller Design
Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel
Abstract:
In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..
Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25432861 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22152860 Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach
Authors: Mohammad Darzi, Ali AsgharLiaei, Mahdi Hosseini, HabibollahAsghari
Abstract:
This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.Keywords: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28742859 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: Load forecasting, artificial neural network, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6862858 Formation and Development of a New System of Government of the Republic of Kazakhstan in the Globalization
Authors: Kadyrzhan Smagulov, Beken Makhmutov, Abai Kurmankulov
Abstract:
The concept of the new government should focus on forming a new relationship between public servants and citizens of the state, formed on the principles of transparency, accountability, protection of citizens' rights. These principles are laid down in the problem of administrative reform in the Republic of Kazakhstan. Also, this wish arises, contributing to the improvement of the system of political management in our country. For the full realization of the goals is necessary to develop a special state program designed to improve the regulatory framework for public service, improving training, retraining and advanced training of civil servants, forming a system of incentives in public service and other activities aimed at achieving the efficiency of the entire system government.Keywords: Kazakhstan, political management, independence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14612857 Load Balancing in Genetic Zone Routing Protocol for MANETs
Authors: P. Sateesh Kumar , S. Ramachandram
Abstract:
Genetic Zone Routing Protocol (GZRP) is a new hybrid routing protocol for MANETs which is an extension of ZRP by using Genetic Algorithm (GA). GZRP uses GA on IERP and BRP parts of ZRP to provide a limited set of alternative routes to the destination in order to load balance the network and robustness during node/link failure during the route discovery process. GZRP is studied for its performance compared to ZRP in many folds like scalability for packet delivery and proved with improved results. This paper presents the results of the effect of load balancing on GZRP. The results show that GZRP outperforms ZRP while balancing the load.Keywords: MANET, routing, ZRP, Genetic algorithm, GZRP, load balancing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21972856 Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm
Authors: R. Srinivasa Rao
Abstract:
This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9 and 34 bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.Keywords: Distribution systems, Capacitor allocation, Loss reduction, Fuzzy, PGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22792855 Using Rao-Blackwellised Particle Filter Track 3D Arm Motion based on Hierarchical Limb Model
Authors: XueSong Yu, JiaFeng Liu, XiangLong Tang, JianHua Huang
Abstract:
For improving the efficiency of human 3D tracking, we present an algorithm to track 3D Arm Motion. First, the Hierarchy Limb Model (HLM) is proposed based on the human 3D skeleton model. Second, via graph decomposition, the arm motion state space, modeled by HLM, can be discomposed into two low dimension subspaces: root nodes and leaf nodes. Finally, Rao-Blackwellised Particle Filter is used to estimate the 3D arm motion. The result of experiment shows that our algorithm can advance the computation efficiency.Keywords: Hierarchy Limb Model; Rao-Blackwellised Particle Filter; 3D tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15902854 Shape Restoration of the Left Ventricle
Authors: May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan
Abstract:
This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.Keywords: Magnetic Resonance Imaging, Left Ventricle, ShapeRestoration, Principle Curvature, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639