Search results for: project based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13042

Search results for: project based learning

11782 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress

Authors: Kavitha Thamadharan, Nurazean Maarop

Abstract:

The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of eassessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.

Keywords: Secure Technology Acceptance, E-Assessment Security, E-Assessment, Education Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
11781 Exploring the Potential of Chatbots in Higher Education: A Preliminary Study

Authors: S. Studente, S. Ellis, S. F. Garivaldis

Abstract:

We report upon a study introducing a chatbot to develop learning communities at a London University, with a largely international student base. The focus of the chatbot was twofold; to ease the transition for students into their first year of university study, and to increase study engagement. Four learning communities were created using the chatbot; level 3 foundation, level 4 undergraduate, level 6 undergraduate and level 7 post-graduate. Students and programme leaders were provided with access to the chat bot via mobile app prior to their study induction and throughout the autumn term of 2019. At the end of the term, data were collected via questionnaires and focus groups with students and teaching staff to allow for identification of benefits and challenges. Findings indicated a positive correlation between study engagement and engagement with peers. Students reported that the chatbot enabled them to obtain support and connect to their programme leader. Both staff and students also made recommendation on how engagement could be further enhanced using the bot in terms of; clearly specified purpose, integration with existing university systems, leading by example and connectivity. Extending upon these recommendations, a second pilot study is planned for September 2020, for which the focus will be upon improving attendance rates, student satisfaction and module pass rates.

Keywords: Chatbot, e-learning, learning communities, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
11780 Motion Detection Techniques Using Optical Flow

Authors: A. A. Shafie, Fadhlan Hafiz, M. H. Ali

Abstract:

Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique.

Keywords: Background modeling, Motion detection, Optical flow, Velocity smoothness constant, motion trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5385
11779 Reducing Greenhouse Gasses Emissions by Recyclable Material Bank Project in Universities of Thailand

Authors: Ronbanchob Apiratikul

Abstract:

This research studied recycled wastes by Recyclable Material Bank project of 17 universities of Thailand for evaluation of reducing greenhouse gasses emission compared with landfilling activity during January 2011 to December 2011. The results showed that the projects collected total amount of recyclable wastes about 1,626.917 metric ton. The office paper has the largest amount among these recycled wastes (55.61 % of total recycled wastes). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables and metal, respectively. The project reduced greenhouse gasses emission equivalent to about 5,263.481 metric ton of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gasses emission is office paper which is 73.45% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metal, mixed recyclables and glass, respectively.

Keywords: recycling, garbage bank, waste management, recyclable wastes, greenhouse gasses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
11778 Time Compression in Engineer-to-Order Industry: A Case Study of a Norwegian Shipbuilding Industry

Authors: Tarek Fatouh, Chehab Elbelehy, Alaa Abdelsalam, Eman Elakkad, Alaa Abdelshafie

Abstract:

This paper aims to explore the possibility of time compression in Engineer to Order production networks. A case study research method is used in a Norwegian shipbuilding project by implementing a value stream mapping lean tool with total cycle time as a unit of analysis. The analysis resulted in demonstrating the time deviations for the planned tasks in one of the processes in the shipbuilding project. So, authors developed a future state map by removing time wastes from value stream process.

Keywords: Engineer to order, total cycle time, value stream mapping, shipbuilding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
11777 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347
11776 Resettlement and Livelihood Sustainability in Sub-Saharan Africa: The Case of Bui Hydro-Power Dam Project, Ghana

Authors: Francis Z. Naab, Abraham M. Nunbogu, Romanus D. Dinye, Alfred Dongzagla

Abstract:

The study assesses the effectiveness of the Bui Dam resettlement scheme in the Tain and the Bole districts in Ghana. The study adopted a mixed approach in its data collection and analyses. Of the eight communities affected by Bui hydropower project, and thus require resettlement, four were purposively selected for primary data collection. Primary data was gathered through questionnaire administration to 157 heads of resettled households, focus group discussions with men and women and in-depth interviews with key informants. The findings indicated that the affected people had been sufficiently contacted at all levels of their resettlement. In particular, the Ghana Dams Dialogue, which served as a liaison entity between the government and the resettlement communities came up for praise for its usefulness. Many tangible policies were put in place to address the socio-cultural differences of traditional authorities. The Bui Dam Authority also rigorously followed national and international laws and protocols in the design and implementation of the resettlement scheme.  In assessing the effectiveness of the resettlement scheme, it was clear that there had been a great appreciation of the compensation regarding infrastructural development, but much more would have to be done to satisfy livelihood empowerment requirements. It was recommended that candid efforts be made to restore the lost identities of the communities resettled, and more dialogue is encouraged among communities living together.

Keywords: Resettlement, livelihood, hydro-power project, Bui Dam, Ghana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
11775 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study

Authors: Mahmoud I. Syam, Osama K. El-Hafy

Abstract:

With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.

Keywords: Learning, motivating, student, teacher, testing hypotheses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
11774 Doping of Conveyor Belt Materials with Nanostructured Fillers to Adapt Innovative Performance Characteristics

Authors: S. Falkenberg, L. Overmeyer

Abstract:

The “conveyor belt" as a product represents a complex high performance component with a wide range of different applications. Further development of these highly complex components demands an integration of new technologies and new enhanced materials. In this context nanostructured fillers appear to have a more promising effect on the performance of the conveyor belt composite than conventional micro-scaled fillers. Within the project “DotTrans" nanostructured fillers, for example silicon dioxide, are used to optimize performance parameters of conveyor belt systems. The objective of the project includes operating parameters like energy consumption or friction characteristics as well as adaptive parameters like cut or wear resistance.

Keywords: Conveyor belt, nanostructured fillers, wear resistance, friction characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
11773 Identification of Flexographic-printed Newspapers with NIR Spectral Imaging

Authors: Raimund Leitner, Susanne Rosskopf

Abstract:

Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.

Keywords: spectral imaging, imaging spectroscopy, NIR, waterbasedflexographic, flexo-printed, recovered paper, real-time classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
11772 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
11771 Trajectory-Based Modified Policy Iteration

Authors: R. Sharma, M. Gopal

Abstract:

This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).

Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
11770 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Tami Alghamdi, Terence Soule

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352
11769 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes

Authors: Salam M. H. Kareem

Abstract:

Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.

Keywords: Physical education, swimming classes, teaching process, teaching pyramid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
11768 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
11767 Assessment of Master’s Program in Technology

Authors: Niaz Latif, Joy L. Colwell

Abstract:

Following implementation of a master’s level graduate degree program in technology, a research-based assessment of the program was undertaken to determine how well the program met its goals and objectives, and the impact of the degree program on the objectives and the needs of its graduates. Upon review of the survey data, it was concluded that the program was meeting its goals and objectives, and that the directed project option should be encouraged.

Keywords: Master’s Degree, Graduate Program, Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
11766 6DSpaces: Multisensory Interactive Installations

Authors: Pedro Campos, Miguel Campos, Carlos Ferreira

Abstract:

Interactive installations for public spaces are a particular kind of interactive systems, the design of which has been the subject of several research studies. Sensor-based applications are becoming increasingly popular, but the human-computer interaction community is still far from reaching sound, effective large-scale interactive installations for public spaces. The 6DSpaces project is described in this paper as a research approach based on studying the role of multisensory interactivity and how it can be effectively used to approach people to digital, scientific contents. The design of an entire scientific exhibition is described and the result was evaluated in the real world context of a Science Centre. Conclusions bring insight into how the human-computer interaction should be designed in order to maximize the overall experience.

Keywords: interaction design, human-computer interaction, multimedia, multisensory installations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
11765 Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Authors: Refaat H. Abd El Razek, Ahmed M. Diab, Sherif M. Hafez, Remon F. Aziz

Abstract:

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Keywords: Project management, typical (repetitive) large scale projects, line of balance, multi-objective optimization, genetic algorithms, time-cost-quality trade-offs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
11764 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
11763 Design and Implementation of an AI-Enabled Task Assistance and Management System

Authors: Arun Prasad Jaganathan

Abstract:

In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.

Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79
11762 Family and Young Learners´ Scholastic Success

Authors: Helena Vomackova

Abstract:

This contribution examines the relationship between the family environment and the level of young pupils’ scholastic success. It comments on the partial results of a research probe carried out in the year 2012 on a sample of 412 Czech Republic primary school pupils of the fourth, fifth and sixths forms within the Project IGA 43 201 15 0004 01. The key links of this project were monitored in relation to the highest education level achieved by the learners´ parents, as well as to the type of family it is (in particular its ability to function), to component factors specific to the family climate (their willingness to share information, communication, parental control) and, finally, to the number of children in the family as an important socialization constituent.

Keywords: Family environment factors, scholastic success, parents’ education, family type, family climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
11761 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.

Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
11760 The Analysis of Secondary Case Studies as a Starting Point for Grounded Theory Studies: An Example from the Enterprise Software Industry

Authors: Abilio Avila, Orestis Terzidis

Abstract:

A fundamental principle of Grounded Theory (GT) is to prevent the formation of preconceived theories. This implies the need to start a research study with an open mind and to avoid being absorbed by the existing literature. However, to start a new study without an understanding of the research domain and its context can be extremely challenging. This paper presents a research approach that simultaneously supports a researcher to identify and to focus on critical areas of a research project and prevent the formation of prejudiced concepts by the current body of literature. This approach comprises of four stages: Selection of secondary case studies, analysis of secondary case studies, development of an initial conceptual framework, development of an initial interview guide. The analysis of secondary case studies as a starting point for a research project allows a researcher to create a first understanding of a research area based on real-world cases without being influenced by the existing body of theory. It enables a researcher to develop through a structured course of actions a firm guide that establishes a solid starting point for further investigations. Thus, the described approach may have significant implications for GT researchers who aim to start a study within a given research area.

Keywords: Grounded theory, qualitative research, secondary case studies, secondary data analysis, interview guide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
11759 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
11758 Teachers Leadership Dimension in History Learning

Authors: Lee Bih Ni, Zulfhikar Rabe, Nurul Asyikin Hassan

Abstract:

The Ministry of Education Malaysia dynamically and drastically made the subject of History mandatory to be in force in 2013. This is in recognition of the nation's heritage and treasures in maintaining true facts and information for future generations of the State. History reveals the civilization of a nation and the fact of national cultural heritage. Civilization needs to be preserved as a legacy of sovereign heritage. Today's generation is the catalyst for future heirs who will support the principle and direction of the country. In line with the National Education Philosophy that aims to shape the potential development of individuals holistically and uniquely in order to produce a balanced and harmonious student in terms of intellectual, spiritual, emotional and physical. Hence, understanding the importance of studying the history subject as a pillar of identity and the history of nationhood is to be a priority in the pursuit of knowledge and empowering the spirit of statehood that is nurtured through continuous learning at school. Judging from the aspect of teacher leadership role in integrating history in a combined way based on Teacher Education Philosophy. It empowers the teaching profession towards the teacher to support noble character. It also supports progressive and scientific views. Teachers are willing to uphold the State's aspirations and celebrate the country's cultural heritage. They guarantee individual development and maintain a united, democratic, progressive and disciplined society. Teacher's role as a change and leadership agent in education begins in the classroom through formal or informal educational processes. This situation is expanded in schools, communities and countries. The focus of this paper is on the role of teacher leadership influencing the effectiveness of teaching and learning history in the classroom environment. Leadership guides to teachers' perceptions on the role of teacher leadership, teaching leadership, and the teacher leadership role and effective teacher leadership role. Discussions give emphasis on aspects of factors affecting the classroom environment, forming the classroom agenda, effective classroom implementation methods, suitable climate for historical learning and teacher challenges in implicating the effectiveness of teaching and learning processes.

Keywords: Teacher leadership, leadership lessons, effective classroom, effective teacher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
11757 Six Sigma Process and its Impact on the Organizational Productivity

Authors: Masoud Hekmatpanah, Mohammad Sadroddin, Saeid Shahbaz, Farhad Mokhtari, Farahnaz Fadavinia

Abstract:

The six sigma method is a project-driven management approach to improve the organization-s products, services, and processes by continually reducing defects in the organization. Understanding the key features, obstacles, and shortcomings of the six sigma method allows organizations to better support their strategic directions, and increasing needs for coaching, mentoring, and training. It also provides opportunities to better implement six sigma projects. The purpose of this paper is the survey of six sigma process and its impact on the organizational productivity. So I have studied key concepts , problem solving process of six sigmaas well as the survey of important fields such as: DMAIC, six sigma and productivity applied programme, and other advantages of six sigma. In the end of this paper, present research conclusions. (direct and positive relation between six sigma and productivity)

Keywords: Six sigma, project management, quality, theory, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6976
11756 Linux based Embedded Node for Capturing, Compression and Streaming of Digital Audio and Video

Authors: F.J. Suárez, J.C. Granda, J. Molleda, D.F. García

Abstract:

A prototype for audio and video capture and compression in real time on a Linux platform has been developed. It is able to visualize both the captured and the compressed video at the same time, as well as the captured and compressed audio with the goal of comparing their quality. As it is based on free code, the final goal is to run it in an embedded system running Linux. Therefore, we would implement a node to capture and compress such multimedia information. Thus, it would be possible to consider the project within a larger one aimed at live broadcast of audio and video using a streaming server which would communicate with our node. Then, we would have a very powerful and flexible system with several practical applications.

Keywords: Audio and video compression, Linux platform, live streaming, real time, visualization of captured and compressed video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
11755 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: Visual search, deep learning, convolutional neural network, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
11754 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes

Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-ariyaskul

Abstract:

The production of Dimethyl acetal, Isovaleradehyde and Pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of Acetaldehyde, Methanol, Ethyl Acetate, 1-propanol, water, iso-amyl alcohol and iso-butyl alcohol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.

Keywords: Dimethyl acetal, Pyridine, wine, Aspen Plus, Isovaleradehyde, polymeric precursors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
11753 A Machine Learning-based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors including socio-economic, demographic, healthcare, public policy and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states, and, if they do, which factors are the most influential. The key findings of this study include (1) there is a confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the most influential predictive factors are identified, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) Florida is identified as a key outlier state pointing to a potential under-diagnosis of ASD.

Keywords: Autism Spectrum Disorder, ASD, clustering, Machine Learning, predictive modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676