Search results for: Data Structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8520

Search results for: Data Structures

7290 Assessing the Relation between Theory of Multiple Algebras and Universal Algebras

Authors: Mona Taheri

Abstract:

In this study, we examine multiple algebras and algebraic structures derived from them and by stating a theory on multiple algebras; we will show that the theory of multiple algebras is a natural extension of the theory of universal algebras. Also, we will treat equivalence relations on multiple algebras, for which the quotient constructed modulo them is a universal algebra and will study the basic relation and the fundamental algebra in question. In this study, by stating the characteristic theorem of multiple algebras, we show that the theory of multiple algebras is a natural extension of the theory of universal algebras.

Keywords: multiple algebras , universal algebras

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
7289 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
7288 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: Connected-car, data modeling, route planning, navigation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
7287 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
7286 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules

Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.

Keywords: Data mining, association rule, fuzzy frequent patterngrowth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
7285 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
7284 Investigating Crime Hotspot Places and their Implication to Urban Environmental Design: A Geographic Visualization and Data Mining Approach

Authors: Donna R. Tabangin, Jacqueline C. Flores, Nelson F. Emperador

Abstract:

Information is power. Geographical information is an emerging science that is advancing the development of knowledge to further help in the understanding of the relationship of “place" with other disciplines such as crime. The researchers used crime data for the years 2004 to 2007 from the Baguio City Police Office to determine the incidence and actual locations of crime hotspots. Combined qualitative and quantitative research methodology was employed through extensive fieldwork and observation, geographic visualization with Geographic Information Systems (GIS) and Global Positioning Systems (GPS), and data mining. The paper discusses emerging geographic visualization and data mining tools and methodologies that can be used to generate baseline data for environmental initiatives such as urban renewal and rejuvenation. The study was able to demonstrate that crime hotspots can be computed and were seen to be occurring to some select places in the Central Business District (CBD) of Baguio City. It was observed that some characteristics of the hotspot places- physical design and milieu may play an important role in creating opportunities for crime. A list of these environmental attributes was generated. This derived information may be used to guide the design or redesign of the urban environment of the City to be able to reduce crime and at the same time improve it physically.

Keywords: Crime mapping, data mining, environmental design, geographic visualization, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
7283 Learning and Evaluating Possibilistic Decision Trees using Information Affinity

Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi

Abstract:

This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.

Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
7282 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform

Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu

Abstract:

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance empirical formula, typical SQL query tasks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
7281 Analysis of Palm Perspiration Effect with SVM for Diabetes in People

Authors: Hamdi Melih Saraoğlu, Muhlis Yıldırım, Abdurrahman Özbeyaz, Feyzullah Temurtas

Abstract:

In this research, the diabetes conditions of people (healthy, prediabete and diabete) were tried to be identified with noninvasive palm perspiration measurements. Data clusters gathered from 200 subjects were used (1.Individual Attributes Cluster and 2. Palm Perspiration Attributes Cluster). To decrase the dimensions of these data clusters, Principal Component Analysis Method was used. Data clusters, prepared in that way, were classified with Support Vector Machines. Classifications with highest success were 82% for Glucose parameters and 84% for HbA1c parametres.

Keywords: Palm perspiration, Diabetes, Support Vector Machine, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
7280 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
7279 A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks

Authors: Minsoo Lee, Julee Choi, Sookyung Song

Abstract:

The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.

Keywords: Aggregation, Incremental View Maintenance, Materialized view, Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
7278 Real Time Data Communication with FlightGear Using Simulink over a UDP Protocol

Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique

Abstract:

Simulation and modelling of Unmanned Aerial Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade, as next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.

Keywords: aerospace, flight control, FlightGear, communication, Simulink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
7277 Comparing Data Analysis, Communication and Information Technologies Expertise Levels in Undergraduate Psychology Students

Authors: Ana Cázares

Abstract:

Aims for this study: first, to compare the expertise level in data analysis, communication and information technologies in undergraduate psychology students. Second, to verify the factor structure of E-ETICA (Escala de Experticia en Tecnologias de la Informacion, la Comunicacion y el Análisis or Data Analysis, Communication and Information'Expertise Scale) which had shown an excellent internal consistency (α= 0.92) as well as a simple factor structure. Three factors, Complex, Basic Information and Communications Technologies and E-Searching and Download Abilities, explains 63% of variance. In the present study, 260 students (119 juniors and 141 seniors) were asked to respond to ETICA (16 items Likert scale of five points 1: null domain to 5: total domain). The results show that both junior and senior students report having very similar expertise level; however, E-ETICA presents a different factor structure for juniors and four factors explained also 63% of variance: Information E-Searching, Download and Process; Data analysis; Organization; and Communication technologies.

Keywords: Data analysis, Information, Communications Technologies, Expertise'Levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
7276 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello

Abstract:

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Keywords: Internet of Things, LoRa, LoRaWAN, smart cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
7275 Urban and Rural Population Pyramids in Georgia Since 1950s

Authors: Shorena Tsiklauri, Avtandil Sulaberidze, Nino Gomelauri

Abstract:

In the years followed independence, an economic crisis and some conflicts led to the displacement of many people inside Georgia. The growing poverty, unemployment, low income and its unequal distribution limited access to basic social service have had a clear direct impact on Georgian population dynamics and its age-sex structure. Factors influencing the changing population age structure and urbanization include mortality, fertility, migration and expansion of urban. In this paper presents the main factors of changing the distribution by urban and rural areas. How different are the urban and rural age and sex structures? Does Georgia have the same age-sex structure among their urban and rural populations since 1950s?

Keywords: Age and sex structure of population, Georgia, migration, urban-rural population.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
7274 Investigation on Behavior of Fixed-Ended Reinforced Concrete Deep Beams

Authors: Y. Heyrani Birak, R. Hizaji, J. Shahkarami

Abstract:

Reinforced Concrete (RC) deep beams are special structural elements because of their geometry and behavior under loads. For example, assumption of strain- stress distribution is not linear in the cross section. These types of beams may have simple supports or fixed supports. A lot of research works have been conducted on simply supported deep beams, but little study has been done in the fixed-end RC deep beams behavior. Recently, using of fixed-ended deep beams has been widely increased in structures. In this study, the behavior of fixed-ended deep beams is investigated, and the important parameters in capacity of this type of beams are mentioned.

Keywords: Deep beam, capacity, reinforced concrete, fixed-ended.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
7273 Integration of Image and Patient Data, Software and International Coding Systems for Use in a Mammography Research Project

Authors: V. Balanica, W. I. D. Rae, M. Caramihai, S. Acho, C. P. Herbst

Abstract:

Mammographic images and data analysis to facilitate modelling or computer aided diagnostic (CAD) software development should best be done using a common database that can handle various mammographic image file formats and relate these to other patient information. This would optimize the use of the data as both primary reporting and enhanced information extraction of research data could be performed from the single dataset. One desired improvement is the integration of DICOM file header information into the database, as an efficient and reliable source of supplementary patient information intrinsically available in the images. The purpose of this paper was to design a suitable database to link and integrate different types of image files and gather common information that can be further used for research purposes. An interface was developed for accessing, adding, updating, modifying and extracting data from the common database, enhancing the future possible application of the data in CAD processing. Technically, future developments envisaged include the creation of an advanced search function to selects image files based on descriptor combinations. Results can be further used for specific CAD processing and other research. Design of a user friendly configuration utility for importing of the required fields from the DICOM files must be done.

Keywords: Database Integration, Mammogram Classification, Tumour Classification, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
7272 A Reversible CMOS AD / DA Converter Implemented with Pseudo Floating-Gate

Authors: Omid Mirmotahari, Yngvar Berg, Ahmad Habibizad Navin

Abstract:

Reversible logic is becoming more and more prominent as the technology sets higher demands on heat, power, scaling and stability. Reversible gates are able at any time to "undo" the current step or function. Multiple-valued logic has the advantage of transporting and evaluating higher bits each clock cycle than binary. Moreover, we demonstrate in this paper, combining these disciplines we can construct powerful multiple-valued reversible logic structures. In this paper a reversible block implemented by pseudo floatinggate can perform AD-function and a DA-function as its reverse application.

Keywords: Reversible logic, bi-directional, Pseudo floating-gate(PFG), multiple-valued logic (MVL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
7271 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data

Authors: Fan Gao, Lior Pachter

Abstract:

The primary tool currently used to pre-process 10X chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.

Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
7270 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: Big data, building-value analysis, machine learning, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
7269 Qualitative Data Analysis for Health Care Services

Authors: Taner Ersoz, Filiz Ersoz

Abstract:

This study was designed enable application of multivariate technique in the interpretation of categorical data for measuring health care services satisfaction in Turkey. The data was collected from a total of 17726 respondents. The establishment of the sample group and collection of the data were carried out by a joint team from The Ministry of Health and Turkish Statistical Institute (Turk Stat) of Turkey. The multiple correspondence analysis (MCA) was used on the data of 2882 respondents who answered the questionnaire in full. The multiple correspondence analysis indicated that, in the evaluation of health services females, public employees, younger and more highly educated individuals were more concerned and complainant than males, private sector employees, older and less educated individuals. Overall 53 % of the respondents were pleased with the improvements in health care services in the past three years. This study demonstrates the public consciousness in health services and health care satisfaction in Turkey. It was found that most the respondents were pleased with the improvements in health care services over the past three years. Awareness of health service quality increases with education levels. Older individuals and males would appear to have lower expectancies in health services.

Keywords: Multiple correspondence analysis, optimal scaling, multivariate categorical data, health care services, health satisfaction survey, statistical visualizing, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
7268 A Visual Control Flow Language and Its Termination Properties

Authors: László Lengyel, Tihamér Levendovszky, Hassan Charaf

Abstract:

This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations out of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This work discusses the termination properties of VCFL and provides an algorithm to support the termination analysis of VCFL transformations.

Keywords: Control Flow, Metamodel-Based Visual Model Transformation, OCL, Termination Properties, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
7267 Comparison of Different Types of Sources of Traffic Using SFQ Scheduling Discipline

Authors: Alejandro Gomez Suarez, H. Srikanth Kamath

Abstract:

In this paper, SFQ (Start Time Fair Queuing) algorithm is analyzed when this is applied in computer networks to know what kind of behavior the traffic in the net has when different data sources are managed by the scheduler. Using the NS2 software the computer networks were simulated to be able to get the graphs showing the performance of the scheduler. Different traffic sources were introduced in the scripts, trying to establish the real scenario. Finally the results were that depending on the data source, the traffic can be affected in different levels, when Constant Bite Rate is applied, the scheduler ensures a constant level of data sent and received, but the truth is that in the real life it is impossible to ensure a level that resists the changes in work load.

Keywords: Cbq, Cbr, Nam, Ns2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
7266 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — In the Case of Critical Dataset Size —

Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno

Abstract:

STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to real-world data

Keywords: Rule induction, decision table, missing data, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
7265 Pt(IV) Complexes with Polystrene-bound Schiff Bases as Antimicrobial Agent: Synthesis and Characterization

Authors: Dilek Nartop, Nurşen Sarı, Hatice Öğütçü

Abstract:

Novel polystrene-bound Schiff bases and their Pt(IV) complexes have been prepared from condensation reaction of polystyrene-A-NH2 with 2-hydroxybenzaldehyde and 5-fluoro-3- bromo-2-hydroxybenzaldehyde. The structures of Pt(IV) complexes with polystyrene including Schiff bases have been determined by elemental analyses, magnetic susceptibility, IR, 1H-NMR, UV-vis, TG/DTA and AAS. The antibacterial and antifungal activities of the synthesized compounds have been studied by the well-diffusion method against some selected microorganisms: (Bacillus cereus spp., Listeria monocytogenes 4b, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermis, Brucella abortus, Escherichia coli, Pseudomonas putida spp., Shigella dysenteria type 10, Salmonella typhi H).

Keywords: Polymer-bound Schiff bases, polystyrene-A-NH2, Pt(IV) complexes, biological activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
7264 Theoretical Investigation of Steel Plated Girder Resistance

Authors: J. Kala, J. Melcher, M. Škaloud, Z. Kala

Abstract:

In the paper, the results of sensitivity analysis of the influence of initial imperfections on the web stress state of a thinwalled girder are presented. The results of the study corroborate a very good and effective agreement of experiments with theory. Most input random quantities were found experimentally. The change of sensitivity coefficients in dependence on working load value is analysed. The stress was analysed by means of a geometrically and materially non-linear solution by applying the program ANSYS. This research study offers important background for theoretical studies of stability problems, post-critical effects and limit states of thin-walled steel structures.

Keywords: Buckling, Fatigue, Imperfection, Steel, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
7263 Fermentative Production of Dextran using Food Industry Wastes

Authors: Marzieh Moosavi-Nasab, Mohsen Gavahian, Ali R. Yousefi, Hamed Askari

Abstract:

Dextran is a D-glucose polymer which is produced by Leuconostoc mesenteroides grown in a sucrose-rich media. The organism was obtained from the Persian Type Culture Collection (PTCC) and was transferred in MRS broth medium at 30°C and pH 6.8 for 24 h. After preparation of inoculums, organisms were inoculated into five liquid fermentation media containing either molasses or cheese whey or different combinations of cheese whey and molasses. After certain fermentation period, the produced dextran was separated and dried. Dextran yield was calculated and significant differences in different media were observed. Furthermore, FT-IR analysis was performed and the results showed that there were no significant differences in the produced dextran structures.

Keywords: Dextran, Leuconostoc mesenteroides, Molasses, Whey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671
7262 The Comparison of Anchor and Star Schema from a Query Performance Perspective

Authors: Radek Němec

Abstract:

Today's business environment requires that companies have access to highly relevant information in a matter of seconds. Modern Business Intelligence tools rely on data structured mostly in traditional dimensional database schemas, typically represented by star schemas. Dimensional modeling is already recognized as a leading industry standard in the field of data warehousing although several drawbacks and pitfalls were reported. This paper focuses on the analysis of another data warehouse modeling technique - the anchor modeling, and its characteristics in context with the standardized dimensional modeling technique from a query performance perspective. The results of the analysis show information about performance of queries executed on database schemas structured according to principles of each database modeling technique.

Keywords: Data warehousing, anchor modeling, star schema, anchor schema, query performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
7261 Probabilistic Robustness Assessment of Structures under Sudden Column-Loss Scenario

Authors: Ali Y Al-Attraqchi, P. Rajeev, M. Javad Hashemi, Riadh Al-Mahaidi

Abstract:

This paper presents a probabilistic incremental dynamic analysis (IDA) of a full reinforced concrete building subjected to column loss scenario for the assessment of progressive collapse. The IDA is chosen to explicitly account for uncertainties in loads and system capacity. Fragility curves are developed to predict the probability of progressive collapse given the loss of one or more columns. At a broader scale, it will also provide critical information needed to support the development of a new generation of design codes that attempt to explicitly quantify structural robustness.

Keywords: Incremental dynamic analysis, progressive collapse, structural engineering, pushdown analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060