

Abstract—The increasing interest on processing data created by

sensor networks has evolved into approaches to implement sensor
networks as databases. The aggregation operator, which calculates a
value from a large group of data such as computing averages or sums,
etc. is an essential function that needs to be provided when
implementing such sensor network databases. This work proposes to
add the DURING clause into TinySQL to calculate values during a
specific long period and suggests a way to implement the aggregation
service in sensor networks by applying materialized view and
incremental view maintenance techniques that is used in data
warehouses. In sensor networks, data values are passed from child
nodes to parent nodes and an aggregation value is computed at the root
node. As such root nodes need to be memory efficient and low
powered, it becomes a problem to recompute aggregate values from all
past and current data. Therefore, applying incremental view
maintenance techniques can reduce the memory consumption and
support fast computation of aggregate values.

Keywords—Aggregation, Incremental View Maintenance,
Materialized view, Sensor Network.

I. INTRODUCTION
EVERAL recent researches have focused on implementing
the sensor network as a database. Such well-known

research projects are the COUGAR project [1] which is being
carried out at Cornell University and the TinyDB project [2],
[3] at UC Berkeley. The architecture proposed by these studies
is not the traditional centralized database approach but a
network-based approach to compute aggregates in the network
whenever possible. That is, the host sends the query to the
network and receives the answer from a sensor node. This
approach can reduce the number of message transmissions,
latency, and power consumption compared to the centralized
server-based approach.

Manuscript received July 25, 2006. This work was partially supported by the
second stage of Brain Korea 21 program.

Minsoo Lee is with the Dept of Computer Science and Engineering, Ewha
Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul, Korea
120-750 (corresponding author phone: +82-2-3277-3401; fax:
+82-2-3277-2306; e-mail: mlee@ewha.ac.kr).

Julee Choi is with the Dept of Computer Science and Engineering, Ewha
Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul, Korea
120-750 (e-mail: blueri00@ewhain.net).

Sookyung Song is with the Dept of Computer Science and Engineering,
Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul,
Korea 120-750 (e-mail: happymint@ewhain.net).

When we form queries we are mostly interested in
aggregation values such as the sum, average, and maximum
rather than raw sensor readings. Therefore, this paper focuses
on aggregation operators and how this operator can be
supported in sensor networks. By using incremental view
maintenance techniques [4], [5], we can support memory
efficient and low powered aggregation operations that can
overcome the limitations of sensor nodes.

The organization of the paper is as follows. Section 2
discusses the related work and section 3 gives an overview of
the incremental view maintenance for the aggregation operator.
Section 4 discusses the implemented system with experimental
results and section 5 gives the conclusion with future work.

II. RELATED RESEARCH
The TinyDB and motes which uses the TinyOS operating

system has been developed at UC Berkeley. Motes is a small
sensor device that also is capable of performing limited
computation tasks. The TinyOS provides basic functions to
easily develop applications for mote-based ad-hoc networks.
Also the Tiny Aggregation (TAG) [6], a power efficient
generic aggregation service for ad hoc networks of TinyOS
motes, has also been developed.

A few important features of this service are as follows. In
TAG, approximate aggregation results are allowed to improve
energy efficiency and reduce communication costs.
Approximate results are useful for on-line monitoring and can
support networking mechanisms for in-network error recovery
[7]. And this partial answer enables users to dynamically refine
their queries using online-aggregation [8].

The core algorithm in the TAG service is as follows. The
parents in the routing tree must produce a single aggregate
value that combines the readings of all child nodes in the
network during the epoch. If the root node could not provide an
aggregate value during the current epoch, many messages must
be sent. In order to achieve this, the parents subdivide the epoch
and the children are required to deliver their partial state
records during a parent-specified time interval. This scheme
raises the question of how parents can choose the specified
interval in which they will receive the values. If the interval is
long enough to receive accurate aggregate values, the power
could be wasted. More research needs to be done in this area.

TAG also supports a GROUP BY concept. When parent

A Materialized View Approach to Support
Aggregation Operations over Long Periods in

Sensor Networks
Minsoo Lee, Julee Choi, and Sookyung Song

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2775International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

97
.p

df

nodes send a query to their children they also send the predicate
which decides the grouping of the children. The children can
compute their group and return the group id to their parents.
The HAVING clause is also sent to the children so that the
answer can be filtered in advance. Additionally, TAG supports
several optimization techniques to improve the performance
and accuracy. A TAG query has the same structure as an SQL
statement except for the EPOCH DURATION clause which
means the frequency of obtaining a sensing value. The example
below shows a query in TAG which returns the average
temperature and id of the sensor at an interval of 30 seconds
EPOCH.

The aggregation functions in TAG can be categorized based

on the characteristics of the sensor network such as duplicate
sensitive, exemplary, and monotonic. The following Table I
shows such categorizations.

TABLE I

CATEGORIZATION OF AGGREGATION FUNCTIONS IN TAG

Materialized views [4], [9] have been extensively researched

in the data warehousing area. They are used to improve the
database performance by working in a similar way as an index.
Materialized views actually store records that result from the
computation of the materialized view definition. Therefore, the
query is run against the records of the materialized view rather
than the base tables, and this dramatically increases the
performance of the query processing because the records in the
view need not be recomputed [10]. One drawback of
materialized views is that they need to be maintained and
refreshed. Changes to the base relations cause the
recomputation of the view and recomputing the view from
scratch can waste time and power. Therefore, incremental view
maintenance is the desired way for maintaining materialized
views by computing only the changes that should be applied to
the view. Most of the view maintenance mechanisms use
mathematical expressions to define a view and compute the
changes to the view.

III. INCREMENTAL VIEW MAINTENANCE FOR AGGREGATION
OPERATORS IN SENSOR NETWORKS

A. Current Technology to Calculate Aggregations in
Sensor Networks
The steps to compute aggregation values in the current

sensor network setting are as follows. First, the sensor network

organizes the routing tree to send the user’s query to the sensor
nodes. Then, the host sends the query with the predicate to
group the nodes. Each node sends the query to its child node
and gets the result from the child node and returns the result and
its group value to its parent node.

The results of an aggregation query would have information
such as <group id, aggregation value>. This aggregation value
is calculated from sensing data in the same epoch. Aggregation
functions are composed of a function f for merging, a function I
for initialization and a function e for evaluation.

Fig. 1 shows the current method of performing calculation of
the aggregation operator AVG in a sensor network. First each
sensor (node 1, 2, 3) senses and initializes the value. Then,
these values are merged along the routing tree. At the end, the
final node (node 4) calculates the average value.

Fig. 1 Current technology to calculate aggregation functions

B. Adding the DURING Clause
In the current sensor network database system it is not

possible to obtain the aggregation value over a long period of
time because the sensors do not have the power or memory to
accumulate the sensed data for a long period of time. In order
for us to support this kind of aggregation we first propose to
add a DURING clause to the TinySQL syntax. The following
query is an example using the DURING clause and Table II
shows the syntax and various usages for the DURING clause.

TABLE II
THE DURING CLAUSE SYNTAX

DURING Syntax Example Description
start – end 6:00 - 16:00 From 6 to 16
start[interval] 6:00 [10hr] From 6, during 10
[interval]* [10hr]* Every 10
interval 10hr During 10
Interval epoch 100 epoch During 10 epoch times

SELECT AVG (temperature), id
FROM sensors
EPOCH DURATION 30s
DURING 10hr

SELECT AVG (temperature), id
FROM sensors
EPOCH DURATION 30s

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2776International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

97
.p

df

C. Query Processing and Incremental View Maintenance
To calculate the aggregation value based on the DURING

clause, we propose to use materialized view techniques and
incremental view maintenance.

Assuming that sensors in the same area have the same group
id, and we want the average temperature values of each group,
we can define a materialized view using the extended TinySQL
and create it at the base station node for efficient computation.

As shown in Fig. 2, the query computes the average

temperature values in groups during a period of 10 hours.
When the parent nodes send the query, they also send the
predicate to decide the group they belong to. Child nodes
receive this query and predicate, and choose their own group
and return the aggregate data records (group id, sensing data,
count). When a node receives an aggregate from a child, it
calculates the sum of the temperature and the sum of counts for
the related group and returns the result. Finally, the base station
sensor (node 31) calculates the average and stores the data into
the materialized view. According to the predicate (group = key
/ 10), the group id of node 31 is 3, the group id of node 21 is 2,
and the group id of node 11 is 1.

Fig. 2 Supporting long-duration queries with current technology

Using this method, during all epochs, we need to store all the

sensing data as shown in Fig. 3. Tn means the n’th epoch from
T1 and the sensor node 31 stores all data to calculate the
average value during the n epochs. At Tn in order to recalculate
the materialized view, the sensing data organized in groups at
each epoch (from T1 to Tn) are needed. Therefore if the time
period is much longer, the system and sensor nodes will

experience more overhead. Thus, considering the limitations of
the sensor nodes, this approach is impossible.

Fig. 3 Overhead without Incremental View Maintenance

Our work suggests that the incremental view maintenance

approach be taken to efficiently update the materialized view.
The following statement shows the formula for incremental
view maintenance. Using this formula, the changes (∆) on the
base relations can be collectively calculated and applied to the
view [6].

Fig. 4 Query processing with Incremental View Maintenance

 ∆V = (∆S1 ∞ S2 ∞ S3 ... ∞ Sn) ∪
 (S1’ ∞ ∆S2 ∞ S3 ... ∞ Sn) ∪
 ...
 (S1' ∞ S2' ∞ S3' ... ∞ ∆Sn)
V'=V∪∆V

CREATE MATERIALIZED VIEW
V (AVG (temperature), group) AS

 (SELECT AVG (temperature), group
 FROM sensors
 GROUP BY group
 DURING 10hr)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2777International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

97
.p

df

Fig. 4 shows the query processing for the DURING clause
using incremental view maintenance in comparison with Fig. 3.

Table III shows the formula used for several aggregation
operators to recalculate the materialized view using
incremental view maintenance. ∆+(S) is the insertion value to
apply to the view, or in other words the sensing result of the
query at each epoch and MAX’ means the recalculated MAX
value.

TABLE III

INCREMENTAL VIEW MAINTENANCE FORMULAS

Fig. 5 shows the recalculated views using Table III formulas.

In the case of group 1, the AVG value at the former epoch is 8
and the COUNT value is 1. And at the current epoch, ∆ + (Sum)
value is 6 and ∆ + (Count) value is 1. Using the incremental
view maintenance, the average value of the group 1 is 7.

Fig. 5 Materialized view recomputation using incremental view
maintenance

However, using materialized views for efficiently using

memory and reducing the updating overhead for a long
duration aggregation query may not be effective in some

situations. For example, if the query is to calculate the average
temperature during 3 minutes, using materialized views is not
effective because sensor node may have enough memory and
do not need to additionally take the updating overhead of
materialized views.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our algorithm

using TinyOS and TinyDB.

A. System Environment and Implementation
Ustar2400 is a hardware platform for sensor networks

developed by the HUINS Company. Fig. 6 shows the structure
of Ustar2400. In the Ustar2400 board, sensor nodes return the
data to the base station node. Using the ISP board, the base
station node can be connected to the host computer and transfer
data. We have implemented our incremental view maintenance
algorithm in the TinyDB at the host computer. The latest
version of TinyOS is tinyos-1.x and has TinyOS, TinyDB and
cygwin together in an integrated development environment.
TinyDB is implemented in JAVA and it supports a GUI or
command window to send queries to the host server.

Fig. 6 Structure of UStar2400 system

The TinyDB JAVA API main classes are TinyDBNetwork,

SensorQueryer, TinyDBQuery, QueryResult, AggOp. The
main classes of TinyDB GUI API are TinyDBMain,
CmdFrame, MainFrame. We have changed and extended the
QueryResult and AggOP classes. By changing these classes we
can define a materialized view and recompute the view using
incremental view maintenance techniques as discussed earlier.
Additionally, the AverageReader, IntReader,
AggregateResultReader classes were modified by adding new
functions.

B. Experimental Results
Fig. 7 shows the graph showing the calculation of averages

using the previous TinyDB. The number of sensor nodes in
each epoch is not always consistent. This means that in each
epoch the average value creates some fluctuations. Fig. 8 shows
the graph for calculating the average during 10 hours using the
TinyDB with incremental view maintenance. As time goes by,
the aggregation value is consistent and does not show any big
fluctuation because of its cumulative nature realized by the
materialized view.

AVG’ = (AVG * COUNT + ∆ + (SUM)) / (COUNT + ∆
+ (COUNT) = (8*1 + 6) / 2 = 7

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2778International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

97
.p

df

Fig. 7 Aggregation result using previous TinyDB

Fig. 8 Aggregation result using incremental view maintenance

V. CONCLUSION
When sensor networks are implemented as sensor databases,

most of the queries focus on aggregation operators because the
user’s interest is on the summarized values rather than the raw
data. We have looked into ways to intelligently and efficiently
execute aggregation queries in the sensor network as a core
service.

We have especially studied the latest techniques, incremental
view maintenance, which is used in the data warehousing area
and applied this to aggregation grouping in the sensor network.
This can improve the energy efficiency and reduce the sensor
memory limitation.

For future work, we need to perform further research on
experiment with specific cases for finding the boundaries on
where the incremental view maintenance technique may incur
more overhead than benefit for specific cases. Extensive
performance evaluation of the incremental view maintenance
for aggregation grouping will be carried out and more
optimization techniques for aggregation service in sensor
networks will be studied.

REFERENCES
[1] Y. Yao and J. Gehrke, “The Cougar approach to in-network query

processing in sensor networks,” in Proc. ACM SIGMOD, 2002
[2] S.Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design of

an acquisational query processor for sensor networks,” ACM SIGMOD,
2003

[3] TinyDB, http://berkeley.intel-research.net/tinydb/
[4] Ashish Gupta and Inderpal Singh Mumick, “Maintenance of Materialized

View: Problems, Techniques, and Applications,” IEEE Data Engineering
Bulletin, Special Issue on Materialized Views and Data Warehousing,
Vol. 18, No. 2, 1995

[5] Ki Yong Lee, Jin Hyun Son and Myoung Ho Kim, “Efficient Incremental
View Maintenance in Data Warehouses,” ACM CIKM, 2001

[6] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong, “TAG: a Tiny Aggregation Service for Ad-Hoc Sensor Networks,”
ACM SIGOPSI, Vol. 36, pp. 131-146, 2002

[7] Ramesh Govindan, Joseph M. Hellerstein, Wei Hong, Samuel Madden,
Michael Franklin, and Scott Shenker, “The Sensor Network as a
Database,” Technical Rep ort 0-771, Compm2E Science Department

[8] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang., “Online
Aggregation,” ACM SIGMOD International Conference on Management
Data (ICDM), 1997

[9] Y.Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom, “View
Maintenance in a warehousing environment,” ACM SIGMOD, 1994

[10] Ashish Gupta, Inderpal Singh Mumick, V.S. Subrahmanian. ,
“Maintaining Views Incrementally,” ACM SIGMOD Record, Vol. 22,
1993, p157-166

[11] Amit Manjhi, Suman Nath, Phillip B. Gibbons, “Tributaries and Deltas:
Efficient and Robust Aggregation in Sensor Network Streams,” ACM
SIGMOD, 2005

[12] J. Considine, F.Li, G. Kollios, and J. Byers, “Approximate aggregation
techniques for sensor databases,” IEEE ICDE, 2004

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2779International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

97
.p

df

