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Abstract—The primary tool currently used to pre-process 10X 

chromium single-cell ATAC-seq data is Cell Ranger, which can take 
very long to run on standard datasets. To facilitate rapid pre-processing 
that enables reproducible workflows, we present a suite of tools called 
scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 
times faster than Cell Ranger on mouse and human samples. Our tool 
can also calculate chromatin interaction potential matrices and 
generate open chromatin signal and interaction traces for cell groups. 
We use scATAK tool to explore the chromatin regulatory landscape of 
a healthy adult human brain and unveil cell-type specific features, and 
show that it provides a convenient and computational efficient 
approach for pre-processing single-cell ATAC-seq data. 

 
Keywords—Single-cell, ATAC-seq, bioinformatics, open 

chromatin landscape, chromatin interactome. 

I. INTRODUCTION 
HE development of automated high-throughput single-cell 
platforms for single-cell ATAC-seq (scATAC-seq) are 

facilitating highly-resolved chromatin accessibility 
measurements that are valuable in functional genomics studies 
[1]. The raw data produced in scATAC-seq experiments consist 
of large numbers of reads, whose pre-processing to identify 
“peak” regions and counts can pose a formidable challenge. 
10X Genomics’ Chromium based scATAC-seq solution 
generates data that can be analyzed with companion software 
called Cell Ranger. While Cell Ranger provides a turnkey 
solution for labs generating data with 10X’s system, its slow 
runtime and large memory requirements hinder the 
development of reproducible workflows for data analysis.  

In previous work, we have presented a modular and efficient 
approach to single-cell RNA-seq (scRNA-seq) pre-processing 
that combines the pseudoalignment program kallisto [2] with a 
suite of tools called bustools [3]. These tools facilitate the 
development of highly efficient and modular workflows for 
scRNA-seq pre-processing that are easy to run using a wrapper 
called kb [4].  

More recently, we incorporated kallisto, bustools and other 
tools into an scATAC-seq software suite, namely scATAK, to 
process scATAC-seq data. In this article, we provided a 
schematic overview of this pipeline; we compared processing 
speed and memory usage of scATAK with Cell Ranger using 
published 10X human PBMC and mouse brain scATAC-seq 
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data; we further created an R notebook for PBMC cell 
clustering and cell type annotation; finally, we presented a 
unique feature of scATAK that combines genome-wide bulk 
HiC type interaction map with scATAC-seq matrix to calculate 
single-cell chromatin interaction potential matrix. Using 
hippocampal scATAC-seq and bulk HiChIP data from a healthy 
adult human brain, we presented chromatin accessibility and 
interaction landscapes for major brain cell types, and proposed 
that a non-coding risk variant of Alzheimer’s disease (AD) may 
disrupt chromatin interaction between a distal enhancer and 
APOE gene in astrocytes.  

II. RESULTS 

A. Overview of scATAK and Benchmarking 
An overview of scATAK procedure is illustrated in Fig. 1. 

As noted, scATAK is a command-line driven tool with three 
modules: quant, track and hic. Module quant runs the following 
steps for single-cell level quantification: 1) Raw 10X scATAC-
seq FASTQ data are processed to add cell barcode sequences 
from R2 reads to the header lines of R1 and R3 biological reads; 
2) Barcode-tagged R1 and R3 FASTQ files for every sample 
are treated as pseudo-bulk ATAC-seq data for genome 
alignment using Minimap2 [5], converted to a name sorted 
BAM alignment file using Sambamba [6], and then subject to 
peak calling using Genrich [7]; 3) Called peak regions for all 
samples are merged to generate a list of accessible chromatin 
regions using bedtools [8] for creating a kallisto index file; 4) 
With kallisto accessible region index as reference, raw 
scATAC-seq files are revisited to generate single-cell region 
count matrix for every sample using kallisto and bustools; 5) To 
estimate gene activity for every single cell, we calculate the 
absolute distance d from ATAC-seq peak centers to 
transcription start sites (TSS) and associate peak regions to the 
nearest gene TSS, a strategy similar to HOMER [9] peak 
annotation. Activity score S for gene i is calculated as weighted 
sum of associated peaks P, with Si = Σ Wij × Pj, where W is a 
distance-dependent step function for weight, values from 1 (d ≤ 
2 kb), 0.7 (2 kb < d ≤ 5 kb), 0.5 (5 kb < d ≤ 10 kb), 0.25 (10 kb 
< d ≤ 20 kb) to 0.03 (20 kb < d ≤ 50 kb). A distance dependent 
weight is originally proposed in MAESTRO pipeline [10] to 
better model gene activity. Instead of using computationally 
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expensive exponential decay to calculate W, we simply 
employed a step function to speed up processing. With 
accessible region and gene activity count matrices, further 
analyses can be performed within R or Python notebooks using 
secondary analyses tools like Seurat [11], snapATAC [12] or 
chromVAR [13]. For our proof-of-principle analyses, we 
created R notebooks with DropletUtils [14] and Seurat loaded. 
After cell clustering and annotation are completed, scATAK 
track module uses cell barcode — cell group table together with 
pseudo-bulk ATAC-seq alignment file generated by scATAK 
quant to create cell group bigwig tracks (normalized by the 
number of cells in the group) for visualization in a genome 
browser. An additional scATAK hic module utilizes a known 
bulk HiC [15] or HiChIP [16] interactome map together with 
single-cell accessible chromatin region matrix to infer potential 
chromatin looping events for individual cells and generate 
group HiC interaction tracks. Thus, group chromatin 
accessibility and interaction landscapes can be visualized side-
by-side. 

 

 

Fig. 1 Schematic flowchart of scATAK pipeline 
 

For benchmarking purposes, we downloaded two 10X 
scATAC-seq datasets that are hosted on 10X Genomics data 
links [17], [18]. In brief, we processed 224,636,372 raw read 
pairs from a human PBMC 5k data and 244,056,346 raw read 
pairs from an adult mouse brain 5k data using both scATAK 
quant and CellRanger (atac-1.2.0) software. With 2, 4, 8 CPU 
threads, real run time and memory usage were monitored by 
snakemake pipeline [19]. As shown in Table I, when PBMC 
data were processed, scATAK quant was roughly 17, 23, 25 
times faster than Cellranger with 8, 4, 2 CPU threads employed. 
For mouse brain data, scATAK was about 14, 16, 18 times 
faster when using 8, 4, 2 CPU threads. With only 2 threads, 
scATAK quant finished PBMC data pre-processing within two 
and half hours, a reasonable time window for users with limited 
computational resources to process scATAC-seq data. In 
contrast, Cellranger took almost 58 hours to process the same 
data. Also noted from Table II, kallisto bus pseudo-alignment 
method works well for mapping raw reads to ATAC-seq peak 
regions, with 45% and 49% pseudo-alignment rate for human 

and mouse data, respectively. Statistics from bustools showed 
most of the aligned read pairs (90% for human and 96% for 
mouse) contain the precise whitelist cell barcodes. With 1-base 
mismatch barcode error correction method embedded in 
bustools, 94% and 97% of aligned read pairs remained for 
single-cell quantification. Inspired by the ultrafast processing 
speed of scATAK quant, we next loaded accessible region 
count matrices from both scATAK and Cell Ranger to 
DropletUtils tool to identify cells from empty droplets (FDR ≤ 
1e-5, Fig. 2 A). As noted, 3,528 cell barcodes were shared 
between 3,595 filtered barcodes from scATAK and 3,653 
filtered barcodes from Cell Ranger, suggesting similar data 
structure of the two matrices. Regions detected in more than 
10% of total cells were used for further dimensional reduction 
and cell clustering. Separate runs of scATAK and Cell Ranger 
matrices using the same default settings of Seurat (see method) 
both resulted in 12 cell clusters, visualized in UMAPs (Figs. 2 
C, D). Cell barcodes within each scATAK generated cluster 
were subject to overlap statistical analysis (Fisher’s exact test) 
with clustered barcodes from Cell Ranger, with -log10P-value 
visualized in a heatmap (Fig. 2 B). Clearly, cell clusters from 
two different pipelines are highly concordant with each other. 

 
TABLE I 

COMPARISON OF REAL RUNNING TIME FOR SCATAK AND CELLRANGER 
PIPELINES 

Sample ID Total read pairs   
PBMC 224,636,372  

CPU threads Real time (scATAK) Real time (CellRanger) Fold 
increase

8 64 min. 1171 min. 18.3 
4 81 min. 1955 min. 24.1 
2 139 min. 3456 min. 24.9 

Sample ID Total read pairs   
Adult mouse 

brain 244,056,346  

CPU threads Real time (scATAK) Real time (CellRanger) Fold 
change 

8 72 min. 1045 min. 14.5 
4 98 min. 1752 min. 17.9 
2 164 min. 3027 min. 18.5 

 
TABLE II 

STATISTICS FROM KALLISTO BUS AND BUSTOOLS 
Sample ID PBMC Adult mouse brain

Processed reads 224,636,372 244,056,346 
Pseudoaligned reads 100,549,039 118,667,309 

Pseudoalignment rate % 44.76% 48.62% 
Pseudoaligned reads in the whitelist 90,210,039 114,063,492 

Whitelist read rate % 89.72% 96.12% 
Pseudoaligned reads with BC corrected 4129483 1,504,416 

Correction rate % 4.11% 1.27% 
 

We next loaded gene score information from scATAK quant 
to guide cell type annotation, with IL7R, CD8A for T cells, 
MS4A1 for B cells, NCR1 for NK cells, MS4A7 for monocytes, 
and ITGAM for dendritic cells (Fig. 2 E). 12 cell clusters were 
then merged into 5 groups for different cell types. With 
chromVAR, we scanned consensus sequences of 386 known 
human TFs in JASPAR core database (2018 version), and 
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calculated normalized z-scores as a measure for enrichment of 
TF motifs at accessible sites of individual cells. With Seurat 
Findmarkers function, signature motifs for different cell 
clusters were identified (wilcox test, adjusted p-value < 0.05). 
Interestingly, the top signature motif for B cells is 

MA0824.1_ID4 (Fig. 2 F). This observation is consistent with 
regulatory roles of Id proteins in lymphocyte development [20]. 
Overall, secondary analyses using pre-processed results from 
the scATAK pipeline revealed expected biological insight from 
PBMC cells.  

 

 
Fig. 2 Benchmarking using PBMC data 

 
B. Exploration of Chromatin Accessibility and 

Interaction Landscapes in Human Brain 
Brain is a complex organ with highly diversified cell 

populations. Distinct chromatin landscapes drive cell-type 
specific gene expression patterns. Previous large cohort 
Genome-wide association studies (GWAS) unveiled thousands 
of single nucleotide polymorphisms (SNPs) associated with 
different neurological disorders, with the majority of SNPs 
being non-coding variants. Although potential regulatory gene 
targets of non-coding SNP regions could be postulated by high-
resolution genome-wide chromatin interactome map, we still 
lack cell-type specificity of the interactions. As mentioned 
above, scATAK implemented a module called hic to infer 
single-cell chromatin looping from bulk chromosome 
conformation capture (3C) data and scATAC-seq data. Recent 

technological advances in the 3C field showed HiChIP [16] – a 
technology combining chromosome conformation capture with 
immunoprecipitation- and tagmentation-based library 
preparation, as a highly sensitive and specific assay to profile 
chromatin interactions of regulatory chromatin regions. In our 
exploration, we downloaded a human hippocampal scATAC-
seq data together with histone H3K27ac HiChIP data generated 
from the same brain region of the same individual for 
integrative analysis [21, GEO accession numbers GSM4441823 
and GSM4441836]. Total of 6,082 cell nuclei were recovered 
from DropletUtils and 13 cell clusters were generated using 
Seurat and visualized in a UMAP (Fig. 3 A). Guided by gene 
activity scores of known brain cell-type specific marker genes 
SLC17A7 (excitatory neurons), GAD2 (inhibitory neurons), 
MAG (oligodendrocytes), PDGFRA (OPC), GFAP (astrocytes) 
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and CX3CR1 (microglia) (Fig. 3 B), six major brain cell types 
were assigned (Fig. 3 A). Noted from the UMAP, excitatory 
neurons have at least two separated sub-clusters, with clusters 
6, 7, 8, 11 forming one sub-group and cluster 5 forming the 
other sub-group. This complex structure of open chromatin 

landscape in excitatory neurons is consistent with multi 
subtypes of excitatory neurons observed from brain single-cell 
RNAseq data [22], [23], demonstrating chromatin accessibility 
as another molecular marker for sub-clustering of excitatory 
neurons.  

 

 

Fig. 3 Cell type specific open chromatin landscape of human hippocampus 
 

We next asked how genetic variants could explain 
susceptibility of hippocampal cells to AD. The scATAK track 
module generated group ATAC signal tracks (normalized by 
mapped group read counts) from cell barcode – cell group table 
and sample pseudo-bulk alignment file. A circos plot (Fig. 3 C) 
provided a gnome-wide view of human GWAS AD risk SNPs 

[24], [25] (SNPs with p < 1×10-9 included) and ATAC signals 
in different cell types (signals binned for every 200 kb genomic 
window). AD risk SNPs were further associated with 2 kb 
genomic bins to calculate chromatin accessibility in different 
cell types. Shown in Fig. 3 D density plot, astrocytes, microglia 
and oligodendrocytes are enriched with subsets of SNP regions 
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that are highly accessible (log10(ATAC-signal + 1) > 3). This 
observation suggests that these cell types are vulnerable to AD 

associated genetic variation. 

 

 
Fig. 4 Predicted cell-type specific chromatin interactions and connection between AD risk variant rs117316645 and APOE gene 

 
We next loaded the scATAK hic module to subset genomic 

looping bin pairs (10 kb resolution interaction map) identified 
from bulk histone H3K27ac HiChIP data (GSM4441836) using 
single-cell chromatin accessibility map already created in 
scATAK quant step. As note, the downloaded map was 
generated by HiC-Pro [25] to include cis-interactions between 
20 kb and 2 Mb. We further filtered the table and only included 
bias-corrected significant interactions (Q-Value_Bias < 0.05). 
Assuming open chromatin regions carrying active histone 
enhancer marks frequently loop together for transcriptional 
regulation, interacting chromatin pairs (detected in bulk data) 
that both are accessible regions in individual cells are given a 
binary potential score for that particular cell. This assumption 
originated from the observation that the pattern of accessibility 
variation in cis recapitulates chromosome compartments, 
linking single-cell accessibility to 3D genome organization, 

reported by Greenleaf’s lab [26]. For N accessible regions in a 
single cell, N×(N-1)/2 possible combinations will be scanned to 
find potential looping pairs. The resulting matrix of chromatin 
interaction potential was loaded to Seurat for signature feature 
analysis (wilcox significance test, with adjusted p-value < 0.05) 
for different cell groups, and top 5 interactions for each cell 
group were visualized in a heatmap (Fig. 4 A). Within the cell-
type specific chromatin interactions, one specific chromatin 
interaction (chr19:44,900,000-44,910,000 and 
chr19:44,950,000-44,960,000) connects APOE gene locus to 50 
kb downstream. Interestingly, AD risk SNP rs117316645 (p < 
4.8×10-24) resides in an ATAC peak region of 
chr19:44,950,000-44,960,000 bin (IGV traces shown in Fig. 4 
B), and is the most significant variant within this bin. 
Considering APOE is the major genetic driver for amyloid 
pathology of AD, the predicted chromatin loop connecting 
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rs117316645 with APOE in astrocytes (Fig. 4 C) postulates 
disrupted astrocyte function in amyloid-β clearance that could 
be further tested.  

In summary, we demonstrated the feasibility of using 
kallisto/bustools based scATAK quant module to quickly pre-
process scATAC-seq data. Compared to industry standard Cell 
Ranger, our pipeline is up to 25 times faster, enabling 
researchers with restricted computational resources to tackle the 
raw data. An additional scATAK track module bridges between 
matrix analysis and genome-wide data visualization. The 
unique scATAK hic module attempts to connect single-cell 
chromatin accessibility to active 3D genome interactome. With 
modular design, scATAK pipeline can easily communicate 
with other scATAC analysis tools. Finally, the source codes and 
benchmarks of scATAK are freely available to the scientific 
community.  

III. DISCUSSIONS 
Kallisto pseudoalignment method was originally developed 

to rapidly process RNA-seq data and quantify transcript 
abundance. Together with bustools, the workflow is extremely 
efficient to pre-process single-cell RNA-seq data. To pre-
process scATAC data, the initial design was to index the entire 
genome for kallisto pre-processing. It turned out that this 
workflow is computationally too expensive. Then a smaller 
index file was created for curated gene regulatory regions only 
(promoters, gene body, enhancers etc.) to speed up kallisto pre-
processing. However, this approach could not capture the most 
important feature – accessible “peak” regions from ATAC-seq 
data. Thus, minimap2 and Genrich, two efficient tools for 
genome mapping and ATAC-seq peak calling, were included in 
our scATAC-seq workflow as pre-kallisto steps. With 45% 
(PBMC) and 49% (mouse brain) raw reads pseudo-aligned to 
the “peak” regions, this workflow efficiently extracts 
biologically important features from raw scATAC data.  

IV. METHODS 

A. Software 
The following software tools were included in scATAK 

pipeline: kallisto (v0.46.1); bustools (v.0.40.0); minimap2 
(v2.15); sambamba (v.0.7.1); Genrich; bedtools (v.2.25.0); 
bedGraphToBigwig. 

B. Hardware 
All computational work was performed on a Supermicro 

server computer with CentOS7 operating system installed. 
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